
Machine Learning Model for Selecting Assignments1

of Variables for SAT Problems2

Jonathan Oliva #3

Department of Computer Science, University of York, United Kingdom4

Peter Nightingale #5

Department of Computer Science, University of York, United Kingdom6

Abstract7

Machine learning (ML) methodologies have been evolving as they have been applied in different fields.8

One area of application is Boolean Satisfiability problems (SAT problems), which have importance9

in industry, such as machinery scheduling in assembly lines, or timing analysis in digital circuits10

reducing costs and optimizing resource production.11

In this field, one of the trending explorations of ML application have been prediction of satis-12

fiability, where a ML model generalizes whether a problem is satisfiable, that is, it has a solution.13

However, despite advances in this practice, the generalization of the correct assignment of variables14

that makes a problem satisfiable has been less explored in comparison except for UNSAT Core.15

In this paper, we propose VAPS-GCN, a machine learning model to aid in the prediction16

of variable assignments for SAT problems. Adapting and improving a machine learning model17

for abstract argumentation to work on SAT problems, representing them as Boolean expressions.18

The process of the proposed model starts with converting a problem from a CNF format into a19

heterogeneous graph representation of SAT problem components. We propose a specialized network20

of GCN layers for aggregation between three distinct kinds of nodes. Finally, the model produces a21

binary generalization of the assignments of the variables from which the most probable are chosen to22

be part of the solution of the SAT problem. Moreover, the model is trained to solve some examples23

of combinatorial problems. Training the model first on available data of random problems and24

then continuing a method of fine-tuning for when provided data for a specific kind of combinatorial25

problem is insufficient.26

The model produces a prediction of the assignment of each variable, combined with its confidence27

(based in a probability calculation). The output of the model may be useful in several ways, such as28

warm-starting solvers or deciding on some variables to assign prior to running a classical solver. In29

this paper, we evaluate the model on a MAXSAT problem. We fine-tune the model for the problem30

class, then use it to pre-assign some of the variables prior to applying a classical MaxSAT solver.31

We show substantial performance improvements with a very small loss of optimality.32
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1 Introduction38

The motivation of our model, Variable Assignment Prediction for Satisfiability using GCN39

(VAPS-GCN), is the limited machine learning methodologies that have been developed to be40

applied to generalize the assignments of variables present in an SAT problem, except for the41

variables that are part of the UNSAT core. There are several approaches to help with the42

process of solving SAT problems, for example, end-to-end machine learning models such as43

NeuroSAT[16], and DG-DAGRNN[2] where they focus on predicting the satisfiability for SAT44

problems. Information about satisfiability that can be used by traditional solvers to assist in45
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reducing time and costs. Approaches such as SATformer[17] to predict satisfiability and the46

UNSAT core composed of conflictive clauses and their literals. A core that causes a problem47

to be unsatisfiable. Our research is broadly concerned with applying machine learning in48

solving constraints satisfaction problems, by using Boolean satisfiability and conjunctive49

normal form to define the problems. Reducing the search space for the assignment of variables50

by pruning the most predictable values. In this and the next section, a brief introduction51

and an overall explanation are extended.52

1.1 Constraint Satisfaction Problems53

The Constraint Satisfaction Problem (CSP) consists of a problem composed of a finite set54

of variables, each of which is associated with a finite domain, and a set of constraints that55

restricts the values which variables can simultaneously take [18]. Problems which are not only56

present in Artificial Intelligence (AI) but also being applied in other parts of the industry,57

to manage processes and scheduling, for instance, determining the best series of activation58

which machines must follow in the assembly of a product. Minimizing costs associated with59

energy and time in the processing of fabrication.60

1.2 Machine Learning Applied to SAT problems61

Solving Boolean Satisfiability problems (SAT problems) raises some challenges to research.62

One of the most common difficulties is the amount variables presented in a problem, it63

increases costs associated with solving it, for instance, time. However, the capacity of machine64

learning(ML) models to learn patterns present in a SAT problem, it is factor that has brought65

attention of researches in the CSP field. Several strategies have been developed in turn to66

explore its advantages and strengths to counter the challenges in SAT problems [5]. Different67

problems have been addressed with machine learning models, for instance a ML model to68

give a prediction of the satisfiability of a problem or predicting the clauses and their literals69

that cause a problem to be unsatisfiable (i.e., predicting a UNSAT core) [6].70

Different branches of ML approaches have been applied and developed to offer aid or71

solution to solving SAT problems. Examples such as QuerySAT[14] to determine a case as72

satisfiable by finding first the correct assignment of variables, then declaring a problem as73

unsatisfiable when not finding them. An example of aiding is Conflict-driven clause learning74

(CDCL) solvers such as NeuroCore [15] proposed for branching heuristics, an ML alternative75

to detect variable assignment that leads toward an unsatisfiable core in MiniSAT a classical76

SAT solver.77

2 Background and Related Work78

In this section, we present an outline of the work in the general area of machine learning for79

SAT solving. Mention some ML-based approaches to aid in SAT solving. Particularly those80

with a similar approach to predict assignments for variables. This section also includes some81

ML models for maximum satisfiability problems.82

2.1 Preliminaries83

Some concepts are to be considered in this paper. For starters, Conjunctive Normal Form84

(CNF), consists of a conjunction of clauses, where each clause is a disjunction of literals (a85

variable or its negation) [16].86
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Another concept is the Boolean Satisfiability problem (SAT problem) which aims to87

determine whether there exists a way of variable assignment of TRUE and FALSE values88

so that a given Boolean formula evaluates to TRUE. If it succeeds, then the formula is89

called satisfiable [6].90

Other concepts or research relevant to this paper are works based on Argumentation91

Frameworks (AF) [4]. As a brief description, Argumentation frameworks are directed graphs92

where the direction of the edges represents an attack, a relationship of conflict against93

the nodes that are the arguments, each directed edge representing one argument attacking94

another. An argument to be accepted must be in a given AF, following a detailed semantic95

[4]. It is possible to represent as a constraint satisfaction problem the task regarding the96

determination of acceptable arguments.97

2.2 Machine Learning Approaches to SAT98

In recent papers ML-based for SAT problem, there is a work that tends to be mentioned99

regarding satisfiability prediction, NeuroSAT[16]. Model based on the message passing100

strategy to communicate and update nodes, which are clauses and literals of an SAT problem.101

A model trained in random problems, it predicts if a problem is satisfiable. It offers a partial102

strategy of obtaining the assignment of variables. However, the work is more focused on the103

prediction of satisfiability.104

An interesting work is DG-DAGRNN[2], an ML approach to solve a kind of SAT problem,105

the Circuit-SAT. It focuses on discovering the solution to an SAT problem, once found, the106

model classifies a problem as satisfiable. This strategy avoids false positive generated by the107

models. However, the model design is focused on a particular kind of SAT problem, making108

it difficult to adapt to others. Using a similar strategy is QuerySAT [14], it was designed to109

predict the correct assignment for the variables, once it found a solution, it checks whether110

the assignments produced a satisfiable state in the problem.111

An example of clauses prediction is SATformer [17], it is a model based on attention112

networks to solve SAT problems. However, its focus is on UNSAT problems. This model113

predicts the most probable clauses and variables to be part of the UNSAT core.114

An example showing the potential of ML approaches is MapleSSV [12] from the Maple115

series. An SAT solver that combines a semi-classical SAT solver structure with an imple-116

mentation of ML algorithms to perform optimization heuristics to solve SAT instances.117

2.3 Other Works of Importance118

A notable approach for this research is learning to prune for constraint programming (CP-119

LTP) [1]. Learning to Prune (LTP) is primarily for optimization problems. In LTP, a ML120

model is used to predict a set of variable assignments (for a subset of the variables) that are121

expected to be part of an optimal solution. The predicted assignments are then applied to the122

problem instance for later being solved with a conventional solver. The goal is to improve the123

runtime performance of the conventional solver with minimal or no impact on the optimality124

of the solution found. The CP-LTP approach translates a constraint model into a graph125

representation, extracting structure of the problem, creating features by variables, using an126

ML classifier to estimate probabilities. We also focus on using LTP methodology to predict127

parts of a large problem instance, looking to get an optimal value in less processing time,128

and with the less big gap against the real optimal value of the problem. A crucial difference129

is that the mentioned CP-LTP approach is a general framework that lets us utilize LTP130

methodology on problems expressed in a CP modeling language while our ML model does131

CVIT 2016
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not work directly with CP modeling but instead predicts SAT instances presented in CNF132

contained in DIMACS files.133

An example in a similar area is partial maximum satisfiability problems. InitPMS [10] is134

proposed to work with local search solvers by aiding in the initialization of variables as an135

alternative to random initialization. An ML approach to predict assignments. Nevertheless,136

these strategies can generate error values for the assignments; therefore, it needs a way to137

filter the less probable predictions.138

Our model was based on the approach of AFGCN [11], a ML model that depicts an139

end-to-end solver for resolution of AF for the field of Abstract Argumentation (AA). ML140

model based on the application of several layers of GCN, of the work of Kipf and Welling [7].141

Nevertheless, it is important to mention some key differences. AFGCN was designed to work142

on a homogeneous graph, which is a graph with only one kind of node while VAPS-GCN model143

was designed to work on a heterogeneous graph, which is multi type of nodes. Therefore,144

adapting different layers of the model to work on multi node type of data. Additionally, an145

increase in the number of edges between nodes, and distinct kinds of edges represent the146

different relationships between different type of nodes. Including a clear separation of node147

features in the input data.148

3 Predicting Assignments with a Machine Learning Model149

The main part of the machine learning model approach is AFGCN[11] as a methodology to150

predict assignments. However, AFGCN was based on a homogeneous graph while for SAT151

problems was used a heterogeneous graph. Therefore, several adaptations and changes were152

used. The architecture and redesign of the process is presented in Figure. 2153

The work starts by using CSP instances converted to SAT in CNF. They are introduced154

into the framework to be processed by the model. As SAT instances, they are converted into155

graph representations following a heterogeneous graph scheme called LCG*, a remarkable156

scheme described in the data generator of G4SATBench [9]. Utilizing clauses and literals157

to create three kinds of nodes. That is, clauses, literals, and the negation of literals, with158

relation between them represented as edges, as showed in Figure. 1. Focusing on avoiding159

loss of information regarding the relationship between literals and their negation.160

For graph construction, ML model layers and information preprocessing, the Deep Graph161

Library (DGL)[19] was used. DGL is a library dedicated to extending and grouping in a162

Figure 1 To the left the LCG* scheme using as example a SAT instance; C1: (L1, -L2, L3), C2:
(-L1, L2, -L3), C3: (L1, L2, -L3). To the right the graph construction using DGL library.
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framework several tools and modules to help in the implementation and designing of graph163

neural network models.164

For each node in the graph several metrics from the area of graph network analysis,165

for instance, eigenvector and closeness centrality, are used to categorize the nodes and166

the relationships that they exhibit in the connections between nodes in the graph scheme167

generated from a respective SAT problem. Separating the nodes regarding three types:168

clauses, literals, and negation of literals. Adding some extra categorization to differentiate169

the node regarding the type.170

Each instance in the dataset is composed of the extracted input features described in this171

subsection and the LCG* graph created with DGL for each problem instance as described in172

the previous subsection. The extracted features are composed of three groups, a dictionary173

where a keyword is a node type, and the data or value is the list of features extracted for174

each node in the node type. However, labels or solutions for problem instances are calculated175

then stored as hash to train the model. Furthermore, there are cases when multiple labels176

are created by problem. Methodology used because SAT problems can have more than one177

solution. This methodology is applied in random problems and in the resource-constrained178

project scheduling problem.179

The VAPS-GCN model processes the data. The input features are submitted to an180

embedding layer to capture the behavior exhibit while the graphs created are to be used in181

the GCN layers presented in the model.182

An important aspect to explain is the GCN layers and their algorithm used in this model.
Originally, GCN layers are designed to perform on homogeneous graphs. It outputs vectors
representing the relevance and behavior that exist between the nodes and their neighborhood.
Following the next definition of their propagation rule:

f(H(l), A) = σ(D̂−1/2ÂD̂−1/2H(l)W (l))

Where A is the adjacency matrix, Â is the result of adding self-loops represented as an183

identity matrix to the adjacency matrix. H(l) are input features of layer l, and W (l) is the184

weight matrix of layer l. The D̂−1/2 are a symmetric normalization of the rows and columns185

of the adjacency matrix. σ is an activation function applied to the layer [11][7].186

GCN layers are notable for capturing relevant information from nodes when dealing187

with homogeneous graphs. However, the VAPS-GCN model is oriented to manage the188

information from the nodes of heterogeneous graphs. Using an innovative design to capture189

heterogeneous behavior of the data, the model is composed of four modules to compute190

convolutions between heterogeneous graphs, known as hetero convolutions. A module for191

hetero convolution works by managing the node-edge-node relationship, a full description192

conformed by source node to destination node on a specific edge type. Description used193

as a key to separate the submodules or ML layers applied to the specific node-edge-node194

relationship. In this case, using GCN layers as submodules as presented in Figure 2.195

A hetero convolution layer operates by reading the features of the source nodes, updating196

a state to be later sent to the destination nodes. In addition, if there are multiple edges with197

the same destination node, they are aggregated together with a method specified by the user198

in its declaration. In the case of this project, it is the sum method. Following this process,199

each hetero convolution layer generates a new state for the respective node features.200

After the four blocks composed by a hetero convolution layer, a ReLU function layer, and201

a dropout layer, the model architecture continues toward a linear function. Then it passes202

through a process to give it a form from where it is possible to calculate the loss and the203

selection of assignments. Using a Sigmoid output layer to generate probability of Boolean204

true or false for the respective literals, their negations, and clauses of the SAT problem.205

CVIT 2016
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Figure 2 Machine learning design model and features. L represent the literals, C the clauses,
and ¬L the negation of literals.

Selecting those predictions where a literal classified as binary one, while its negation206

should be binary zero, or the inverse. The objective is to find a separation in probabilities207

between the predictions, where they must aim toward opposite bounds between them such208

as binary one and zero. The higher the separation, the more confident the prediction is.209

Finally, a threshold is used to separate the more confident assignments. Generating a210

replication of the SAT problem as a new SAT instance. Adding some unary clauses to assign211

literals corresponding to the confident predictions.212

4 Experimental Evaluations213

In this section, the problems to be used to apply the model are described, together with the214

results of using the model already trained to prune them. Furthermore, the chosen metric to215

be used to measure the model’s overall performance is the Matthews Correlation Coefficient216

(MCC). A balanced metric for binary data that works well when overseeing unbalanced217

datasets.218
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The VAPS-GCN model was trained using a fine-tuning approach, in which the model219

initially learns with general and more available data. Then in a later time, this pretrained220

model continues its learning training with objective but scarcer data, a smaller dataset221

with a specific kind of SAT problem. Being VAPS-GCN model to be pretrained first in222

random problems. Then the model is trained in objective data, in this research, it will be223

the resource constraint project scheduling problem instances. Both cases of training using224

Adam as optimizer, and binary cross-entropy as loss function.225

In addition, a balancing was performed over the labels of the dataset. The loss method226

was balanced with the Boolean TRUE and FALSE assignments of the real solutions present227

in the list of probable assignments for a problem, considering that they are in CNF. It was228

done with the intention of avoiding fitting problems caused by having a binary dataset with229

more TRUE than FALSE values, or the other way around.230

An important mention is the training methodology. Using predicted assignments and a231

list of the real labels, correct solutions, to train the model. Here, each solution is a vector232

composed of ordered assignments toward a satisfiable solution. Each element of the list is233

a probable assignment of the literals for an SAT problem in CNF. Then, the most similar234

solution vector is used to compute the loss. The number of solutions in the label list for both235

problems in this research is twenty.236

The purpose is to let the model detect a prediction based on its understanding of the237

structure of the problem. Once a path has been detected, train the model to improve its238

prediction. Learning to identify the general structure of an SAT problem and directing the239

model toward solutions found. This also works as an approach when handling SAT problems240

with more than one solution. This approach used with the two kinds of problems mentioned241

in the next subsections.242

4.1 Random Problems243

The initial data used to train the model were random problems generated by the SR generator244

present in the G4SATBench framework [9]. The generated random problems do not have a245

defined internal structure compared to real-world problems. However, they can be used to246

guide the model in learning the dynamics of a SAT problem in CNF. Their design can be a247

challenge to resolve to ML models. So, they are usually used to assert model performance.248

Generating a dataset, then separating it into 50000 and 10000 satisfiable problems for the249

training and validation sets, respectively. Each problem has between 40 and 100 variables.250

After training the model over 250 epochs, and with a batch of 300, the validation was251

measured, producing a value of 46.10% for the mean MCC of the best epoch obtained in the252

model, and an accuracy generated on the predictions of the same set got a value of 73.05%.253

4.1.1 Resource Constrained Project Scheduling Problem254

Resource-constrained project scheduling problems (RCPSP) are combinatorial optimization255

problems where the objective is to find an optimal organization of activities that can use256

the resources associated with their operation in a small interval of time and cost-efficient.257

Activities with a known processing time or duration and a number and kind of resources to258

operate. Activities can follow a sequence, a precedence relation between pair of activities to259

operate. Furthermore, there are distinct types of resources; their availability responds to260

the demands of the activities for their operation. The problem looks for a schedule of the261

activities with the shortest duration that respects resource availability and the precedence262

relations between activities.[3].263

CVIT 2016
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Figure 3 To the left a chart reflecting the level of pruning. To the right a chart reflecting the
speed increase in comparison with the original. The size of the circles indicates the hardness, that
is, time used by the MAXSAT solver to find the solution for the instance without the VAPS-GCN
model. Both charts display distinct types of new solution found after using the ML model: Outside
Optimal Value (OV), UNSAT, and Inside Optimal Value (OV)

The RCPSP instances used in this research paper are satisfiable and originally obtained264

from PSPLIB[8]. After Savile Row[13] a constraint programming modeling assistant was265

used to generate DIMACS files, the WMaxCDCL2024 MAXSAT solver was applied with266

twenty different random seeds to add some level of randomness to the labels of the training267

and validation sets. Using only the hard clauses in the construction of the graphs used in268

the VAPS-GCN model.269

The results of the experiment are presented in Figure 3. Taking into consideration a270

hard instance as the time that a MAXSAT solver needs to be used to find a solution without271

the application of the VAPS-GCN model. There is a clear indication of improving speed272

in solving MAXSAT problems, in most cases a decrease around 50% in solving time (CPU273

time), including some of the most difficult instances when applying our ML model. In the274

pruning area, despite changes in the number of variables, we found that most of the pruning275

of hard instances oscillate between 12% and 25%. Moreover, when measuring the optimal276

makespan between the original and the new instances, an average percentage gap of 0.30%277

was found, with a 0.0% as median.278

However, the decrease in CPU time to solve an instance, and solutions generated by the279

solver when using our VAPS-GCN model tend to be outside of the optimal values generated280

by the solver, or become UNSAT when handling hard instances. Moreover, only the less281

hard instances (less than around 500 milliseconds original CPU time) tend to be inside the282

original optimal value. Even if their solving time decreased around 50%.283

5 Conclusions284

LTP offers a very promising approach to reduce CPU time in solving combinatorial problems285

such as the RCPSP. The application of ML model methodologies generated a solution faster286

than using the MAXSAT solver uniquely. It found solutions for most of the problems.287

However, it still needs to improve on recognizing assignments of variables that are part of the288

optimal solution for the hardest instances. However, it is a fact that solutions were found for289

most of the problem instances and the small optimal makespan gap offers an opportunity to290

improve. Improving methodologies could include using some strategies for unit propagation.291

Also, working with critical information like the variables in the constraint programming292

model. Including soft clauses in the processing of the VAPS-GCN model.293
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