
Preemptive jobshop scheduling with maximum
workload constraints
Tanguy Terrien1 #

LAAS-CNRS, Université Paul Sabatier, Toulouse, France
IRIT, Université Paul Sabatier, Toulouse, France

Cyrille Briand #

LAAS-CNRS, Université Paul Sabatier, Toulouse, France

Abstract
Optimizing schedules in real-world settings often requires considering maximum workload constraints,
especially for human resources, to ensure regulatory compliance, impose rest periods, and/or level the
workload over the working horizon. This paper focuses on this particular problem within the domain
of preemptive jobshop scheduling, a central problem in scheduling theory. Preemption is particularly
relevant when human resources are involved, allowing personnel to flexibly switch between tasks. It
also offers theoretical insights as a relaxation of non-preemptive problems. The main contribution of
this paper is a Constraint Programming approach designed to handle maximum workload constraints
in a preemptive setting, without decomposing activities into unit-duration tasks (which may be
computationally prohibitive). The experimental results demonstrate the effectiveness of our approach
on a set of examples, highlighting its performance compared to a well-known industrial solver, IBM’s
CP Optimizer.

2012 ACM Subject Classification Theory of computation → Constraint and logic programming;
Computing methodologies → Planning and scheduling

Keywords and phrases Constraint Programming, Scheduling, Maximum workload constraints

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.23

Acknowledgements This work was supported by the French National Research Agency (ANR) under
the project HIS3 ANR-22-CE10-0012-05.

1 Introduction

Optimizing schedules in real-world settings requires considering maximum workload con-
straints, especially for human resources, to ensure regulatory compliance, prevent fatigue, and
maintain productivity [9]. Neglecting these constraints can lead to significant legal penalties,
reduced productivity, increased errors, or significant employee turnover. Conversely, ensuring
adequate rest and manageable workloads improves employee well-being and enhances overall
operational safety and efficiency. Sectors like project management, healthcare (e.g., nurse
scheduling) and transportation (e.g., train driver scheduling) face this kind of regulations,
which make the integration of such workload and rest time rules a complex aspect of schedul-
ing. General overviews of scheduling theory and manufacturing processes also underscore
the importance of these considerations [9].

Scheduling approaches based on constraint programming (CP) now enable the efficient
resolution of industrial problems, from medium to large size, involving complex and het-
erogeneous constraints (e.g., see [4]). CP frameworks allow integrating diverse constraints,
including constraints arising from the involvement of human operators in production pro-
cesses. However, modeling the preemptive nature of human activities remains challenging for

1 Corresponding author

© Tanguy Terrien and Cyrille Briand;
licensed under Creative Commons License CC-BY 4.0

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:9

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:tanguy.terrien@laas.fr
https://orcid.org/0009-0000-6791-1237
mailto:briand@laas.fr
https://orcid.org/0000-0003-1890-9100
https://doi.org/10.4230/LIPIcs.CVIT.2016.23
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Preemptive jobshop scheduling with maximum workload constraints

CP-based approaches. Indeed, in many real-world scenarios, human operators may interrupt
started tasks. This preemptive behavior introduces significant combinatorial complexity
in determining schedules. The resulting increase in the solution space often leads to a
degradation in the performance of constraint-based methods when applied to such highly
dynamic and flexible scheduling environments.

To account for human-centered concerns in scheduling while avoiding the above mentioned
combinatorial issue, we introduce a new class of constraints that model rest-time requirements
for operators over specific time intervals: the MaxW constraints (short for Maximum
Workload constraints), presented in Section 3. The contributions of this paper are outlined
below: (i) we introduce a new class of workload constraints for operators, which generalize
practical requirements often found in industry, such as the prohibition of working on two
consecutive shifts; (ii) we propose a constraint programming model for the preemptive jobshop
problem with these constraints, building on the Mistral solver and adapting its propagation
algorithms to handle these constraints efficiently; (iii) we also present a more extensive model
using IBM® ILOG CPLEX Optim Studio (CPO) [4], used as a baseline for comparison with
our Mistral modeling; (iv) finally, building on existing pJSP instances (preemptive Jobshop
scheduling Problem), we generate a set of benchmark instances incorporating workload
constraints, varying the density of mandatory rest periods.

The remainder of the paper is organized as follows: Section 2 reviews related work,
Section 3 formalizes the problem and the proposed constraints, Section 4 details the modeling
approaches with two different solvers (Mistral and CPO), Section 5 presents and analyzes
the experimental results, and Section 6 concludes and outlines directions for future work.

2 Brief state-of-the-art

The resource-constrained project scheduling problem (RCPSP) provides a foundational
framework to model limited resource availability in scheduling. When human resources are
involved, traditional RCPSP formulations are extended to incorporate specific workload
constraints such as maximum working hours or minimum rest periods between tasks [4].

Mathematical Programming, particularly Mixed-Integer Linear Programming (MILP),
is also common for modeling workload constraints, as seen in nurse rostering problems,
where integer programming techniques are applied [10] or column generation-based heuristic
approaches [11]. While powerful, exact solutions for large instances can be computationally
costly. Metaheuristics are widely employed for intractable large-scale problems such as
complex scheduling environments, like nurse rostering [1, 5].

In this paper, the focus is on the Jobshop Scheduling Problem (JSP). It is a classic
NP-hard problem that is focused on processing jobs on machines. Introducing human
operators with specific constraints makes the problem significantly more complex. Each
operation may require not only a machine but also an operator with limited working hours
and mandatory rest periods. While the general JSP has been extensively studied, research
papers explicitly integrating human resources are scarce. In [7] a state-of-the-art and a
branch-and-bound algorithm are proposed to deal with operators’ unavailability constraints.
A so-called filter-and-fan based heuristic is also proposed for scheduling in flexible job shops
under workforce constraints in [8].

The preemptive Job Shop Scheduling Problem (pJSP) further complicates JSP by allowing
operation interruptions. While this can lead to better makespan, it significantly complicates
scheduling logic. The pJSP maximum workload constraints is a generalization of the already
NP-hard pJSP (considering makespan minimization). It is therefore also NP-hard. Adding

https://github.com/ehebrard/Mistral-2.0/tree/b1eb4af6ebd59556ea450121f6fcd3e47dd16568
https://people.brunel.ac.uk/~mastjjb/jeb/orlib/jobshopinfo.html

T. Terrien, C. Briand 23:3

maximum workload constraints on human resources introduces a new dimension, requiring
careful consideration of breaks, shift limits, and rest periods for assigned operators. This
intertwines personnel scheduling’s resource constraints with job shop operations’ intricate
dependencies. Research into online printing shop scheduling, which also involves flexible
job shop problems with resumable operations and machine unavailability, has employed CP
models [6]. While their work focuses on makespan minimization without explicit maximum
workload constraints, these studies provide a strong foundation for modeling and solving
pJSP with additional complexity, which is directly applicable to our context. Relevant work
by Juvin et al. [3] presents an efficient CP approach designed for the pJSP. This work does
not take into account maximum workload constraints, but offers the advantage of avoiding
the combinatorial enumeration of all shifts. We show below how this work can be extended
to MaxW constraints.

3 Considered problem

A MaxW constraint is defined as a triplet
(
δk

uv, k, [u, v]
)
, where k is an operator (or machine),

[u, v] is a time interval, and δk
uv is the minimum required number of rest shifts (i.e., time units

not allocated to any task) for operator k within this interval. We consider the Maximum
Workload preemptive Jobshop Scheduling Problem (MaxW-pJSP). Work is defined by a
set of jobs J , where each job Ji ∈ J is composed of a set of ni tasks ti,j for j ∈ {1, ..., ni}
(i indexes the job). We consider K operators, indexed from 0 to K − 1. Each task ti,j

has a processing time pi,j , an earliest starting date si,j and an latest completion date ei,j .
Furthermore, each task is assigned to an operator that must execute it. Note that we consider
the preemptive version of the problem, i.e. an operator can interrupt a task anytime and
resume it later. To model workload regulation, we generate for each operator k a set of
maximum workload constraints under the form

(
δk

uv, k, [u, v]
)

(see Section 5.1 for details on
how they were generated to reflect a realistic production environment). The objective is to
minimize the makespan, denoted by Cmax, which represents the total completion time of
the schedule. Our scheduling problem includes several types of constraints, which together
ensure the feasibility and coherence of the schedule. Each task ti,j has a duration constraint,
enforcing that any task is fully executed. A task may also have a release date and a due
date to respect. Every task is assigned a specific unique operator. All tasks within a job are
ordered (it is called precedence constraints, i.e. ti,2 can only start when ti,1 is finished, etc).
All working shifts and rest shifts of a same operator should not overlap. These constraints
define the pJSP, to which we add MaxW constraints.

4 Modeling

To improve computational efficiency, we avoid explicitly modeling every working shift by
leveraging the Mistral solver and its specialized PreemptiveNoOverlap constraint [3].
This constraint bounds task execution to ensure the operator has sufficient time for all
preemptive tasks within the horizon. Mistral’s tailored propagation, including overload
checks, efficiently solves the pJSP with makespan minimization. An explicit shift-based
schedule is then derived using Jackson’s polynomial-time algorithm [2]. This solution is
guaranteed to be optimal. This approach significantly reduces the number of variables and
constraints. We propose a new Mistral-based model for this problem.

CVIT 2016

23:4 Preemptive jobshop scheduling with maximum workload constraints

4.1 Mistral model
In the following, if not specified, consider i ∈ {0, ..., |J |−1}, j ∈ {0, ..., ni}, k ∈ Operators.
q indexes the SubIntervals of a MaxW constraint (explained in Figure 1), i.e. and q ∈
SubIntervals(MaxW). We write Ck the set of MaxW constraints of operator k, tasksk the
set of tasks of operator k (which is fixed beforehand).

min Cmax

si,j ∈ [0, ub − pi,j], ei,j ∈ [pi,j , ub] ∀i, j (V1)
Cmax ∈ [0, ub] (V2)

dkq ∈ [0, |q|] ∀k, ∀q (V3)
ei,j ≥ si,j + pi,j ∀i, ∀j (C1)

si,j+1 ≥ ei,j ∀i, ∀j (C2)
si,0 = 0 and ei,ni

= Cmax ∀i (C3)

Pre.NoOverlap
(

{(si,j , ei,j , pi,j)}
⋃

{(startq, endq, dkq)}
)

∀i, ∀j ∈ tasksk, ∀k, ∀q (C4)∑
q∈[uz,vz]

dkq ≥ δz ∀k, ∀q, ∀(δz, uz, vz) ∈ Ck (C5)

dkq ≤ max(δ) ∀k, ∀(δz, uz, vz) ∈ Ck, ∀q ∈ [u, v] (C6)

Variables: For each task j of each job i, we define a start time variable and an end
time variable (V1), where ub is an upper bound on the schedule length. The objective is to
minimize the makespan, denoted by Cmax (V2), which represents the total completion time
of the schedule.
Additional variables: To handle workload constraints, we divide the time horizon into
subintervals. Every point in time at which a MaxW constraint may begin or finish defines
a boundary of a subinterval. As a result, the full scheduling horizon is partitioned into a
sequence of non-overlapping time windows defining potential starts and ends of a subinterval.
Note that these subintervals cover every shift. We then introduce, for each operator k and
each subinterval q, a rest duration variable dkq representing the amount of rest shifts allocated
to operator k within subinterval q. For all k and q, dkq is non-negative and is bounded from
above by the size of interval q (V4) and by the biggest value of δ of all MaxW constraints
that contain interval q (C6).

Let us give an example. Consider a unique operator with two MaxW constraints (3, 0, 8)
and (2, 4, 10). The MaxW constraints, computed subintervals and their associated duration
variables are depicted in the Figure 1:

Constraints: Each task ti,j has a duration constraint, enforcing that any task is fully
executed (C1). Every task is assigned a specific unique operator (in (C4), tasksk define all
tasks assigned to operator k). Tasks within a same job are linked by precedence constraints
(C2). To ensure that no two tasks of a same operator overlap, a preemptive non-overlap
constraint is imposed for each operator k (C4), to its set of actual tasks and to the additional
rest variables. Lastly, the model ensures that maximum workload constraints are verified.
Indeed, for each operator k and each MaxW constraint defined by a triple (δk

u,v, k, [u, v]), the
model identifies the set of rest subintervals that are contained in interval [u, v]. The total
duration of rest assigned within these subintervals must be at least δ (C5), thereby ensuring
compliance with operator workload limitations.

T. Terrien, C. Briand 23:5

Figure 1 Two MaxW constraints, their subintervals and associated duration variables

By enforcing a PreemptiveNoOverlap constraint on all working tasks and all rest
shifts for each operator, we ensure that tasks can be scheduled preemptively without conflict.
Note that the original Mistral solver does not support variable task durations in the Pree-
mptiveNoOverlap constraint. We adapted the propagation algorithm to accommodate
our requirements. This improvement is soon to be added to the open source code of Mistral,
that can be found on GitHub). Thanks to the adapted propagation algorithm, variables si,j ,
ei,j and dkq are computed by the solver in a way that guarantees that a feasible preemptive
schedule exists and that it is optimal in terms of makespan.

4.2 CPO model
As a comparison to our approach, we also implemented a model for the MaxW-pJSP using
CPO, a leading CP solver for scheduling [4]. When preemption is forbidden, the modeling
process is straightforward: each task is represented as a continuous block of fixed size, and
the solver’s main task is to determine the order of these blocks. In such cases, advanced
algorithms like edge-finding or detectable precedences, as described in [12], are particularly
effective. However, when preemption is allowed, tasks can alternate for a single operator,
notably increasing the combinatorial complexity. This requires introducing a decision variable
for every shift of every task, making it more challenging for the solver to propagate constraints
effectively. The model is the following (for notations, see beginning of subsection 4.1). Also
we write ckz = (δkz, ukz, vkz) ∈ Ck, ∀z ∈ {1, ..., |Ck|}.

min max
i,j

(
endOf(Wi,j,pij)

)
interval Wijℓ, size = 1 ∀i, ∀j, ∀ℓ ∈ {1, ..., pij} (V1)

interval Okckzλ, optional , size = 1 ∀k, ∀ckz, ∀λ ∈ {1, ..., δz} (V2)
Okckzλ ⊆ [ukz, vkz] ∀k, ∀ckz, ∀λ ∈ {1, ..., δz} (C1)

EndBeforeStart(Wij,ℓ−1, Wij,ℓ) ∀i, ∀j, ∀ℓ ∈ {2, ..., pij} (C2)
EndBeforeStart

(
Wi,j,pij , Wi,j+1,0

)
∀i, ∀j ∈ {0, ..., ni − 1} (C3)

NoOverlap
(

[Wijℓ]∀i,j,ℓ ∪ [Okcλ]∀c,λ

)
∀k, j ∈ tasksk (C4)∑

y=1...|Ck|
λ=1...|δy|

Presence
(
Okckyλ

)
.
(
Okckyλ ∈ [ukz, vkz]

)
≥ δz ∀k, ∀ckz (C5)

CVIT 2016

https://github.com/ehebrard/Mistral-2.0

23:6 Preemptive jobshop scheduling with maximum workload constraints

In this model, we have two families of decision variables. For each task j of each activity
i, we add as many unit-length interval variables (V1) as the processing time of the task
(indexed by ℓ). To deal with MaxW constraints, the model also features a set of interval
variables O. For every MaxW constraint (δ, u, v) of operator k, we add δ unit-length optional
interval variables (V2). If these optional variables are included in the final solution, they
must be scheduled within the interval [u, v] (C1). These variables allow flexibility in how
rest periods are scheduled to satisfy workload regulations. The objective is still to minimize
the makespan (i.e. minimize the latest end of every last shift of every task). Constraint C2
enforces sequential execution of a task: for each unit ℓ of any task ij except the last, the
shift represented by variable Wijℓ must end before Wij(ℓ+1) begins. Precedence constraints
between successive operations of the same activity are also imposed (C3). Constraint C4
enforces a no-overlap condition, ensuring that for each operator, all its working (W) and rest
(O) shifts do not overlap in time. Lastly, this model handles the max workload requirement
(C5). For each operator k and each MaxW constraint ckz defined over a time window
[ukz, vkz], the model requires for at least δz optional intervals to be present in this window.

5 Experiments

5.1 Generating instances
To run experiments on the MaxW-pJSP problem, we took pJSP instances of the literature
[3], and generated MaxW constraints. The first main parameter of our algorithm to generate
MaxW instances is the global desired density (D). It expresses the overall proportion of rest
days that each operator should have over the entire horizon (H) of the instance. These rest
days are distributed across multiple time intervals, which are randomly chosen but must
respect some constraints. Each interval should be at least 3 shifts, and at most 0.2 ∗ H
shifts (neither too short nor too long). Within each interval, the number of days of rest is
related to the second main parameter, the local desired density (d̊). It expresses the overall
proportion of rest days that the operator should have over any specific MaxW interval. This
proportion is chosen so that its distribution is gaussian: N (d̊, d̊/4). This method introduces
some unpredictability into when rest periods occur and how long they are. MaxW constraints
are generated for each operator until the total number of rest days for all operators meet the
desired global density target.

We generated MaxW constraints for all triplets (instance, D, d̊), with respectively instance
in {abz5-9} ∪ {ft06, ft10, ft20} ∪ {la01-40} ∪ {orb01-10} ∪ {swv01-20}, D in {0.1, 0.2, 0.3}
and d̊ in {0.05, 0.1, 0.15, 0.2, 0.25, 0.3}, which makes a total of 78*18 = 1,404 instances.

5.2 Results
Experiments were ran on an Intel E5-2695 v4 2.1Ghz CPU with 256 GB of RAM and 36
hearts. The time limit for every instance was an hour.

Solver Mistral CPO Equality
Best Solution (makespan value) 1057 (75.3%) 278 (19.8%) 69 (4.9%)

Table 1 Comparison of number of best solutions found by solvers

Table 1 sums up the number of instances where respectively the Mistral approach/the
CPO approach/none found the best solution in under an hour. We observe that Mistral
performed better than CPO in more than three quarters of all instances (1057 over 1404).

T. Terrien, C. Briand 23:7

Only 20% of all 1404 instances were solved better by the CPO solver, and both solvers found
the same lowest makespan in 69 instances.

Figure 3 in the appendix presents the number of instances were an optimal solution was
found under an hour across 18 different global and local density settings for our set of 78
pJSP instances. One can see that except for variants of ft06, in all 77 problems, the Mistral
solver shows optimality on at least as much instances as the CPO solver. In total, 41.5%
of all 1404 instances are solved to optimality by Mistral, against only 5.3% for CPO. The
approach using Mistral demonstrates a clear superiority overall. We can also observe from
this table that some families of instances are harder than others. The swv instances are
probably hard because of their sizes (very large instances), while abz instances have high
durations of tasks. orb instances seem intrinsically hard.

0.
1_

0.
05

0.
1_

0.
1

0.
1_

0.
15

0.
1_

0.
2

0.
1_

0.
25

0.
1_

0.
3

0.
2_

0.
05

0.
2_

0.
1

0.
2_

0.
15

0.
2_

0.
2

0.
2_

0.
25

0.
2_

0.
3

0.
3_

0.
05

0.
3_

0.
1

0.
3_

0.
15

0.
3_

0.
2

0.
3_

0.
25

0.
3_

0.
3

Ac
cu

m
.

Density of instance (global_local)

0

500

1000

1500

2000

2500

3000

3500

Ti
m

e
of

 th
e

be
st

 so
lu

tio
n

(s
)

2 61 %

4 71 %

5 77 %

8 82 %

13 88 %

23 93 %

58 98 %
100100 %

Times on instances of same densities
Mistral
CPO

Figure 2 Time comparison for instances with same global and local densities

Figure 2 compares runtimes of both approaches, on instances grouped by identical density
parameters, indicated as pairs. Each dot represents the runtime of the best solution found
for a particular instance. To the right of the plot, the vertical accumulation shows, for each
solver, the proportion of instances were the best solution was found before the corresponding
time. From this plot, it is evident that Mistral consistently outperforms CPO across all
instance densities, finding solutions significantly faster. This performance gap is especially
pronounced on instances with density pairs [0.3, 0.05] and [0.3, 0.1] (i.e. many MaxW
constraints with a low number of rest shits), which appear to be particularly easy for Mistral.

Overall, Mistral proves to be significantly more effective than CPO, offering better solution
quality, more optimality proofs, faster computation times and scaling well to large instances.

6 Conclusion

In this work, we introduced a new class of workload constraints for operators in the context
of the preemptive job shop scheduling problem. These constraints generalize commonly used
rules in industrial settings, such as avoiding consecutive shifts, and aim to provide more
flexible and expressive models of operator fatigue and workload balance. We proposed a
constraint programming model implemented in the Mistral solver, leveraging its efficient
handling of preemption, and we adapted key propagation mechanisms to support the new
constraints. We also presented a CPO model used as a reference for empirical evaluation.

CVIT 2016

https://people.brunel.ac.uk/~mastjjb/jeb/orlib/jobshopinfo.html

23:8 Preemptive jobshop scheduling with maximum workload constraints

A set of benchmark instances was generated to test the models under varying workload
constraint densities. The model implemented using Mistral proved to be significantly more
efficient than the one using CPO, both in terms of computation time and effectiveness
(optimality proofs).

Future work will focus on extending the proposed framework with minimum workload
constraints (MinW), which complement the MaxW constraints by enforcing minimum work
durations in specific time intervals. Another promising direction involves the development of
hybrid decision strategies that combine disaggregated reasoning (e.g., disjunctive resource
scheduling, as used in this paper) with aggregated reasoning (e.g., cumulative resource
modeling) to better handle long-term planning, where exact activity timings are not yet
fixed. Such approaches could enable more scalable scheduling in real-world applications.

References
1 S. Haspeslagh, P. De Causmaecker, A. Schaerf, and M. Stølevik. The first international nurse

rostering competition 2010. Annals of Operations Research.
2 W.A. Horn. Some simple scheduling algorithms. Naval Research Logistics Quarterly, 1974.
3 Carla Juvin, Emmanuel Hebrard, Laurent Houssin, and Pierre Lopez. An efficient constraint

programming approach to preemptive job shop scheduling. In 29th International Conference
on Principles and Practice of Constraint Programming (CP 2023).

4 P. Laborie, J. Rogerie, P. Shaw, and P. Vilím. IBM ILOG CP optimizer for scheduling - 20+
years of scheduling with constraints at IBM/ILOG. Constraints An Int. J., 2018.

5 Z. Liu, Z. Liu, Z. Zhu, Y. Shen, and J. Dong. Simulated annealing for a multi-level nurse
rostering problem in hemodialysis service. Applied Soft Computing.

6 W.T. Lunardi, E.G. Birgin, P. Laborie, D.P. Ronconi, and H. Voos. Mixed integer linear
programming and constraint programming models for the online printing shop scheduling
problem. Computers Operations Research.

7 Ph. Mauguière, J.-C. Billaut, and J.-L. Bouquard. New Single Machine and Job-Shop
Scheduling Problems with Availability Constraints. Journal of Scheduling, 2005.

8 David Müller and Dominik Kress and. Filter-and-fan approaches for scheduling flexible job
shops under workforce constraints. International Journal of Production Research, 2022.

9 Michael L. Pinedo. Scheduling: Theory, Algorithms, and Systems. Springer, 2012.
10 H.G. Santos, T.A.M. Toffolo, R.A.M. Gomes, and S. Ribas. Integer programming techniques

for the nurse rostering problem. Annals of Operations Research, 2016.
11 P. Strandmark, Y. Qu, and T. Curtois. First-order linear programming in a column generation-

based heuristic approach to the nurse rostering problem. Computers & Op. Research, 2020.
12 Petr Vilím, Roman Barták, and Ondrej Cepek. Extension of O(nlogn) filtering algorithms for

the unary resource constraint to optional activities. Constraints, pages 403–425, 2005.

T. Terrien, C. Briand 23:9

A appendix1

Mistral CPO
abz5 0 (0.0%) 0 (0.0%)
abz6 2 (11.0%) 0 (0.0%)
abz7 1 (6.0%) 0 (0.0%)
abz8 0 (0.0%) 0 (0.0%)
abz9 0 (0.0%) 0 (0.0%)
ft06 15 (83.0%) 16 (89.0%)
ft10 0 (0.0%) 0 (0.0%)
ft20 15 (83.0%) 0 (0.0%)
la01 18 (100.0%) 15 (83.0%)
la02 18 (100.0%) 0 (0.0%)
la03 17 (94.0%) 0 (0.0%)
la04 14 (78.0%) 0 (0.0%)
la05 18 (100.0%) 15 (83.0%)
la06 18 (100.0%) 6 (33.0%)
la07 17 (94.0%) 0 (0.0%)
la08 18 (100.0%) 3 (17.0%)
la09 18 (100.0%) 4 (22.0%)
la10 18 (100.0%) 5 (28.0%)
la11 17 (94.0%) 2 (11.0%)
la12 18 (100.0%) 2 (11.0%)
la13 18 (100.0%) 1 (6.0%)
la14 18 (100.0%) 4 (22.0%)
la15 17 (94.0%) 1 (6.0%)
la16 0 (0.0%) 0 (0.0%)
la17 12 (67.0%) 0 (0.0%)
la18 0 (0.0%) 0 (0.0%)
la19 0 (0.0%) 0 (0.0%)
la20 1 (6.0%) 0 (0.0%)
la21 1 (6.0%) 0 (0.0%)
la22 8 (44.0%) 0 (0.0%)
la23 18 (100.0%) 0 (0.0%)
la24 3 (17.0%) 0 (0.0%)
la25 0 (0.0%) 0 (0.0%)
la26 15 (83.0%) 0 (0.0%)
la27 8 (44.0%) 0 (0.0%)
la28 11 (61.0%) 0 (0.0%)
la29 2 (11.0%) 0 (0.0%)
la30 18 (100.0%) 0 (0.0%)
la31 15 (83.0%) 0 (0.0%)

Mistral CPO
la32 17 (94.0%) 0 (0.0%)
la33 16 (89.0%) 0 (0.0%)
la34 16 (89.0%) 0 (0.0%)
la35 18 (100.0%) 0 (0.0%)
la36 1 (6.0%) 0 (0.0%)
la37 4 (22.0%) 0 (0.0%)
la38 0 (0.0%) 0 (0.0%)
la39 3 (17.0%) 0 (0.0%)
la40 0 (0.0%) 0 (0.0%)

orb01 0 (0.0%) 0 (0.0%)
orb02 0 (0.0%) 0 (0.0%)
orb03 0 (0.0%) 0 (0.0%)
orb04 0 (0.0%) 0 (0.0%)
orb05 0 (0.0%) 0 (0.0%)
orb06 0 (0.0%) 0 (0.0%)
orb07 0 (0.0%) 0 (0.0%)
orb08 7 (39.0%) 0 (0.0%)
orb09 0 (0.0%) 0 (0.0%)
orb10 1 (6.0%) 0 (0.0%)
swv01 0 (0.0%) 0 (0.0%)
swv02 4 (22.0%) 0 (0.0%)
swv03 0 (0.0%) 0 (0.0%)
swv04 0 (0.0%) 0 (0.0%)
swv05 0 (0.0%) 0 (0.0%)
swv06 0 (0.0%) 0 (0.0%)
swv07 0 (0.0%) 0 (0.0%)
swv08 0 (0.0%) 0 (0.0%)
swv09 0 (0.0%) 0 (0.0%)
swv10 0 (0.0%) 0 (0.0%)
swv11 1 (6.0%) 0 (0.0%)
swv12 0 (0.0%) 0 (0.0%)
swv13 0 (0.0%) 0 (0.0%)
swv14 2 (11.0%) 0 (0.0%)
swv15 0 (0.0%) 0 (0.0%)
swv16 17 (94.0%) 0 (0.0%)
swv17 18 (100.0%) 0 (0.0%)
swv18 18 (100.0%) 0 (0.0%)
swv19 14 (78.0%) 0 (0.0%)
swv20 18 (100.0%) 0 (0.0%)
Total 582 (41.5%) 74 (5.3%)

Figure 3 Number of instances where an optimal solution was found

CVIT 2016

	1 Introduction
	2 Brief state-of-the-art
	3 Considered problem
	4 Modeling
	4.1 Mistral model
	4.2 CPO model

	5 Experiments
	5.1 Generating instances
	5.2 Results

	6 Conclusion
	A appendix1

