
Certified Grounding of Extensions of First-Order
Logic
Daimy Van Caudenberg1 #

KU Leuven, Belgium

Carlos Cantero #

KU Leuven, Belgium

Markus Anders #

RPTU Kaiserslautern-Landau, Germany
KU Leuven, Belgium

Bart Bogaerts #

KU Leuven, Belgium
Vrije Universiteit Brussel, Belgium

Abstract
This is a work-in-progress paper that presents the foundations of a novel methodology for the certified
grounding of first-order logic (FOL). This methodology will be key to developing trustworthy and
auditable grounders, and can be instrumental for debugging and testing. However, there are
major challenges to overcome. At the level of grounding algorithms, these include (not necessarily
equivalence-preserving) transformations; symmetry detection and elimination; and techniques that
simplify the grounding, potentially by arguments that reason globally over the input. All of these
techniques serve to simplify the problem that will be solved later. At the level of the language, for
practical modelling purposes, we aim to support rich extensions of FOL with aggregates, types, and
inductive definitions, which all come with their own challenges for support in the proof system at
hand. In this paper, we describe the foundations of this new methodology, introducing the normal
form that lies at its core, as well as the first steps towards a certifying grounder that supports rich
extensions of FOL.

2012 ACM Subject Classification Theory of computation → Constraint and logic programming;
Theory of computation → Logic and verification

Keywords and phrases First-Order Logic, Grounding, Proof logging

Funding This work was funded by the European Union (ERC, CertiFOX, 101122653). Views and
opinions expressed are however those of the author(s) only and do not necessarily reflect those of the
European Union or the European Research Council. Neither the European Union nor the granting
authority can be held responsible for them.

1 Introduction

The adoption of certified solvers has significantly increased trust in solver outputs by allowing
the external verification of the solver’s results. However, these assurances are only meaningful
if the solver’s input accurately reflects the original problem. Because many reasoning systems
rely on grounding, it is important to increase trust in this grounding process. In this paper,
we describe our current work, which forms the basis for a novel methodology for certified
grounding of first-order logic (FOL) over finite domains.

Essentially, the role of a grounder for plain FOL in a given finite domain is to replace
each universal quantifier by a (potentially large) conjunction and each existential quantifier

1 Corresponding author

mailto:Daimy.VanCaudenberg@kuleuven.be
http://orcid.org/0000-0002-7975-4838
mailto:Carlos.Cantero@kuleuven.be
http://orcid.org/0009-0009-1330-1383
mailto:anders@cs.uni-kl.de
http://orcid.org/0009-0004-5992-8433
mailto:Bart.Bogaerts@kuleuven.be
http://orcid.org/0000-0003-3460-4251

2 Certified Grounding of Extensions of First-Order Logic

by a disjunction. However, state-of-the-art grounding systems rely on complex techniques to
reduce the size of the grounded model. Hence, there are still major challenges to overcome
when developing a trustworthy grounder. Of course, the user’s trust in the grounder can be
increased using extensive software testing, but this does not prove the absence of bugs. One
way to truly show the absence of bugs is by formally verifying the tool at hand. However,
given the complex nature of the grounding software, this is infeasible. Our goal is to introduce
a methodology for certified grounding, in the sense that the grounder produces not only a
ground formula but also a (machine-verifiable) proof that the obtained grounding is correct.

In this paper, we lay the foundations for this novel methodology. We introduce a normal
form for first-order logic, which has certain interesting properties when it comes to grounding.
Next, we describe how to ground this normal form and briefly discuss the requirements for
a suitable proof system for this grounding process. Note that the formal description of a
suitable proof format is future work. Last, we show how this seemingly restrictive normal
form can be extended to support extensions of FOL, including types, functions, (inductive)
definitions, and aggregates. Ultimately, the goal is to allow users to express their problems
using a rich language consisting of FOL sentences. By introducing a certified grounder for
such a language, users can express their problems in a human-readable way, while increasing
trust that the correct problem is being solved at a lower level.

2 Preliminaries

These preliminaries are based on [9].

First-Order Logic A vocabulary V is a set of predicate and function symbols. Each predicate
and function symbol has an arity, which is the number of arguments it takes. We denote
predicate (function) symbols with arity n using P/n (f/n :). A predicate (function) with
arity 0 is called a proposition (object) symbol. Note that from now on, we assume that every
vocabulary contains the proposition ⊤, representing truth.

A term is a variable or an n-ary function applied to n terms. An atom is an n-ary
predicate applied to n terms. If p and q are terms, p = q is also an atom. Next, we define a
formula:

an atom is a formula,
if ϕ and ψ are formulas, then so are ¬ϕ,ϕ ∧ ψ,ϕ ∨ ψ,ϕ ⇒ ψ,ϕ ⇐ ψ and ϕ ⇔ ψ,
if ϕ is a formula and x is a variable then ∀x : ϕ and ∃x : ϕ are formulas.

A sentence is a formula without unquantified variables. A theory T over vocabulary V is a
set of sentences over the symbols of V . A structure S over vocabulary V consists of a domain
D and an interpretation for all symbols in V. A structure is partial if it does not interpret
all symbols in V. From now on, we will assume that the domain D is finite.

Given a vocabulary V, a partial structure S over V and a theory T over V, the model
expansion problem consists of finding a structure S ′ such that:

S ′ expands S (meaning it has the same domain, and agrees with S),
and S ′ satisfies T (i.e., it is a model of T).

From now on, we assume that the vocabulary V is extended with an object symbol v/0 for
every value v ∈ D.

▶ Example 1. We now define the pigeonhole problem as a model expansion problem. First,
we define the vocabulary V = {Pigeon/2,Hole/2, SitsIn/1}, which contains predicates that
allow us to distinguish pigeons from holes, and to assign pigeons to holes. Next, we define

D. Van Caudenberg, C. Cantero, M. Anders, B. Bogaerts 3

the theory;

T =


∀h : Hole(h) ⇔ ¬Pigeon(h).

∀p, h : (¬Hole(h) ∨ ¬Pigeon(p)) ⇒ ¬SitsIn(p, h).
∀p : Pigeon(p) ⇒ ∃h : Hole(h) ∧ SitsIn(p, h).

∀p1, p2, h : (Hole(h) ∧ Pigeon(p1) ∧ Pigeon(p2) ∧ p1 ̸= p2) ⇒ ¬SitsIn(p1, h) ∨ ¬SitsIn(p2, h).


The first sentence of the theory ensures that pigeons are not holes, and vice versa. Next, the
second sentence ensures correct typing for the SitsIn/2 predicate. The last two sentences
ensure that each pigeon sits in a hole and that each hole can contain at most one pigeon.
Given the structure S = {D = {P1, P2, H},Pigeon = {P1, P2},Hole = {H}} with fewer
pigeons than holes, model expansion of the structure S given theory T fails.

In what follows, let x̄ denote x1 . . . xn for some n ≥ 0, intended to represent a tuple
of variables; and let ϕ(x̄) mean some of the free variables of ϕ are among x̄. Hence, ϕ(x)
means that x is a free variable in ϕ. We use ϕ(x : v) to denote the formula obtained by
replacing all occurrences of x by v ∈ D, and by extension ϕ(x̄ : v̄) denotes the formula
obtained by replacing xi in x̄ by the corresponding vi in v̄. Given an n-ary predicate
P/n (function f/n), P (v̄n) (f(v̄n)) denotes the application of predicate P (function f) to
arguments (v1, . . . , vn) ∈ Dn. As a result, for P/0, we have that P (v̄n) = P (), and for f/0
we obtain f(v̄n) = f().

3 Grounding first-order logic

Before introducing the new normal form, which will form the foundation for our proof
system, we give a brief introduction to grounding FOL. Given a theory T over vocabulary V
and a (partial) structure S, the task of grounding consists of reducing T to an equivalent
propositional theory T ′ over VS

prop, i.e., an equivalent quantifier- and variable-free theory over
a vocabulary that contains only propositional symbols. First, given a vocabulary V and a
(partial) structure S, we construct the propositional vocabulary VS

prop such that it contains:
a propositional symbol Pv̄n

for each predicate P/n ∈ V and tuple (v̄n) ∈ Dn

a propositional symbol fv̄n,v for each function f/n ∈ D and tuple (v̄n, v) ∈ D
a propositional symbol eqv,w for each tuple (v, w) ∈ D.

The theory should also be extended such that the semantics of functions are correct, which
is done by adding the following propositional formulas for each function f/n ∈ D:

∧
v∈D

 ∧
v′∈D:v′ ̸=v

¬fv̄n,v ∨ ¬fv̄n,v′

 (1)

∨
v∈D

fv̄n,v (2)

Next, we define the instantiation rules for quantifiers:

▶ Definition 2 (Instantiation Rules for quantifiers). Given a variable x and a formula ψ, a
universal quantifier can be instantiated as follows;

∀x : ψ(x)
∀inst ∧

v∈D ψ(x : v)

and similarly, the existential quantifier can be instantiated using the following rule;

4 Certified Grounding of Extensions of First-Order Logic

∃x : ψ(x)
∃inst ∨

v∈D ψ(x : v)

These instantiation rules allow for the transformation of sentences into equivalent quantifier-
and variable-free expressions. However, to obtain an equivalent propositional theory, all non-
propositional atoms (i.e., equations and predicates with arity n > 0) need to be instantiated
as well. This can be done using the vocabulary VS

prop.
We illustrate this using a toy example.

▶ Example 3. Given a vocabulary V = {A/1, B/1, C/1, D/2} and structure S containing
a finite domain D = {v1, . . . , v4}, the goal is to obtain a propositional grounding for the
following formula;

∀x : A(x) ∨ (B(x) ⇒ ∃y : C(y) ∧D(x, y)) . (3)

First, we apply the instantiation rule ∀inst, obtaining:∧
v∈D

A(v) ∨ (B(v) ⇒ ∃y : C(y) ∧D(v, y)) .

Next, applying ∃inst grounds the formula to an equivalent quantifier-free formula:∧
v∈D

A(v) ∨

(
B(v) ⇒

∨
w∈D

C(w) ∧D(v, w)
)
.

Then we replace all atoms by their counterparts in VS
prop:∧

v∈D
Av ∨ ¬Bv ∨

∨
w∈D

Cw ∧Dv,w. (4)

Note that this yields a propositional conjunction of |D| propositional formulas containing
2|D| + 2 propositional symbols (or their negation). If the goal is to solve this formula using
a SAT solver, this formula needs to be transformed into conjunctive normal form (i.e., a
conjunction of a disjunction of propositions or their negations). However, this causes the
formula to grow exponentially, caused by the disjunction of conjunctions in the formula.

This example illustrates that this grounding method risks producing formulas of imprac-
tical size. Hence, it is not surprising that in practice, state-of-the-art grounding tools apply
many optimizations to reduce the size of the grounded model. These techniques can largely
be split into two categories. The first technique consists of rewriting the original theory T to
reduce the size of the final model [7, 6].

▶ Example 4. This example is based on [7, 6]. We are given the formula ∀x : ∀y :
P (x,A) ∨ P (y,A) over vocabulary V = {P/2, A/0} as well as a structure S containing
the finite domain D. Grounding this formula would yield a conjunction of |D|2 formulas
containing a disjunction of two propositional symbols each. However, the equivalent formula

(∀x : P (x,A) ∨ T) ∧ (∀y : P (y,A) ∨ ¬T)

over V ∪ {T/0}, yields only 2|D| formulas of the same size after grounding.

The second technique aims to efficiently determine small groundings by taking the available
knowledge (described by a structure S) into account. In practice, there is often a partial
structure available describing the specific instance of the problem (for example, a graph and
a list of colors in a graph coloring problem, or a list of pigeon and holes in the pigeonhole
problem).

D. Van Caudenberg, C. Cantero, M. Anders, B. Bogaerts 5

▶ Example 5. The grounding in Equation (4) from Example 3 can be significantly reduced,
if a structure S is given which interprets predicates B/1 and C/1. This can be done by
replacing all applications of those predicates with their truth values according to S. Replacing
B/1 and simplifying yields the following formula:∧

v∈D:S|=B(v)

A(v) ∨
∨

w∈D
C(w) ∧D(v, w).

Finally, replacing C/1 and simplifying yields the following:∧
v∈D:S|=B(v)

A(v) ∨
∨

w∈D:S|=C(w)

D(v, w),

which consists of a conjunction of |{v ∈ D : S |= B(v)}| ≤ |D| formulas consisting of a
disjunction of d′′ + 1 atoms or their negation, where d′′ = |{w ∈ D : S |= C(w)}| ≤ |D|.

In this paper, we focus on this second technique. We do this by introducing a normal form
which allows users to describe so-called conditions for the quantifiers. These conditions
indicate which parts of the ground formula are actually relevant, as indicated by the available
input structure. In the next section, we formalize this new normal form.

4 Ground Normal Form

The Ground Normal Form (GNF) supports compact grounding by attaching conditions to
parts of formulas, allowing us to skip irrelevant ground instances when their satisfaction can
be determined directly from the structure. Thus, it generalizes the structural simplifications of
Example 5 and systematizes them into the grounding process itself. Initially, these conditions
are described by the users themselves, however, the goal is to allow users to ground arbitrary
sentences in FOL (given a finite domain), and to automatically detect suitable conditions, as
done by Wittockx et al. [8].

The two main advantages of the Ground Normal Form are that:
formulas in this normal form immediately ground to conjunctive normal form (CNF, a
conjunction of disjunctions of propositions or their negation),
and the use of binary quantifiers allows for a smaller grounding by limiting the domain
over which a quantifier is instantiated, using the available information.

We deliberately chose to define a normal form that grounds to Conjunctive Normal Form
(CNF), the standard format used by most SAT solvers. These solvers are among the most
efficient reasoning tools available, and since proof logging is a requirement for participation
in the annual SAT competition, most state-of-the-art solvers are certifying. By grounding to
this normal form, users gain access to a large portfolio of certifying solving tools in order to
reason about the problem at hand. By also providing a machine-verifiable proof that this
grounding process correct, the users trust in the tool chain is increased, knowing that the
SAT solver is solving the correct problem.

To do this, we will also develop a proof logging system, allowing grounders to log which
instantiation and evaluation rules are applied. Note that the goal of a proof is to show
that the obtained grounding is correct (in the sense that it is equivalent to the given FOL
formula), the goal is not to show that the problem has been solved correctly. The effectiveness
of this proof logging system hinges on balancing expressivity and efficiency: the format
must be expressive enough to integrate into the grounder with minimal overhead, while also
being efficient enough to allow straightforward verification of each rule application. Equally

6 Certified Grounding of Extensions of First-Order Logic

important is the trustworthiness of the proof checker itself—if the checker is unreliable, the
value of the proof is lost. Therefore, the verification of proof steps should be simple enough
to allow the checker to be formally verified.

Before introducing these so-called binary quantifiers, we adapt our definition of the model
expansion problem. The vocabulary V is partitioned into two vocabularies: Vin and Vout,
respectively representing the “input” and “output” vocabularies. Intuitively, Vin contains
those symbols whose interpretation is already provided by the given structure, and Vout
contains those symbols whose interpretation remains to be determined. Hence, given two
vocabularies Vin and Vout , a structure Sin over Vin and a theory T over V = Vin ∪ Vout , the
model expansion task is to find a V-structure S that:

Expands Sin (meaning it has the same domain and agrees with Sin on all symbols in Vin),
and Satisfies T (i.e., it is a model of T).

To take full advantage of the information available in Sin, GNF uses binary quantifiers
(inspired by [4]).

▶ Definition 6. Given formulas φ and ψ(x) in FOL, the binary quantifiers used in GNF are
defined as follows:

∀x[φ(x)] : ψ(x) def= ∀x : φ(x) ⇒ ψ(x)

∃x[φ(x)] : ψ(x) def= ∃x : φ(x) ∧ ψ(x).

We call φ a condition on ψ and write Qx : ψ(x) as an abbreviation for Qx[⊤] : ψ(x), where
Q ∈ {∀, ∃}. Given n ≥ 0 and Q ∈ {∀, ∃}, we write Qx̄[φ] as an abbreviation for

Qx1[⊤] : Qx2[⊤] : . . . : Qxn[φ(x̄)],

and Qx̄[φ̄] is an abbreviation for

Qx1[φ1(x1)] : Qx2[φ2(x1, x2)] : . . . : Qxn[φn(x̄)].

The ground normal form is defined as follows:

▶ Definition 7. A FOL formula is in Ground Normal Form if it is a universally quantified
disjunction of existentially quantified atoms or their negation, such that every quantification
has a condition and every condition consists only of symbols belonging to Vin.

Given a formula in GNF, we get that for each value v ∈ D and each formula Qx : [φ(x)] : ψ(x)
with binary quantifier Q ∈ {∀, ∃}, only Sin is required to determine the truth value of φ(v).
As such, it is guaranteed that these conditions can be evaluated during the grounding phase.

▶ Example 8. The FOL formula in Equation (3) can be expressed in GNF as follows:

∀x : A(x) ∨B(x) ⇒ ∃y : C(y) ∧D(x, y)
⇔ ∀x : A(x) ∨ ¬B(x) ∨ ∃y : C(y) ∧D(x, y) implication to conjunction
⇔ ∀x : B(x) ⇒ A(x) ∨ ∃y : C(y) ∧D(x, y) reordering, conjunction to implication
⇔ ∀x[B(x)] : A(x) ∨ ∃y[C(y)] : D(x, y) Definition 6

For now, we have chosen to limit this normal form to only include atoms that do not
contain function symbols. In the future, we will expand this normal form to include function
and object symbols as well, and eventually, the goal is to ground arbitrary FO sentences over
finite domains. We strive to go even further than that and to also support a rich system of
extensions for FOL, such as types, arithmetic, aggregates, and even (inductive) definitions.

D. Van Caudenberg, C. Cantero, M. Anders, B. Bogaerts 7

5 Grounding GNF

One of the main advantages of the Ground Normal Form is that sentences in GNF immediately
ground to CNF (as opposed to an arbitrary propositional formula). Furthermore, the
conditions of the binary quantifiers limit the size of the obtained grounding. We first
introduce instantiation rules for the binary quantifiers.

▶ Definition 9 (Instantiation Rules for binary quantifiers).

∀x[φ(x)] : ψ(x)
∀GNF

inst ∧
v∈D:Sin |=φ(x:v) ψ(x : v)

where ∀x[φ(x)] : ψ(x) is in GNF, and its dual

∀x̄[φ̄] : ∃y[ξ(x̄, y)] : ψ1(x̄, y) ∨ . . . ∨ ψm(x̄)
∃GNF

inst ∀x̄[φ̄] :
∨

v∈D:Sin |=∃x̄:ξ(x̄,v) ψ1(x̄, v) ∨ . . . ∨ ψm(x̄)

where m > 0 and ∀x̄[φ̄] : ∃y[ξ(x̄, y)] : ψ1(x̄, y) ∨ . . . ∨ ψm is in GNF.

Given a sentence ϕ in GNF, an equivalent quantifier-free formula can be obtained by applying
the instantiation rules ∀GNF

inst and ∃GNF
inst . Note that the conditions of these instantiation rules

limit the scope of the instantiation: instead of instantiating x by every value in the domain,
only values that fulfill the condition are taken into account. Because it is required that these
conditions are defined over the input vocabulary Vin (and thus interpreted by Sin), the truth
value of a condition φ(x : v) can be fully determined. This is done by grounding φ(x : v)
to an equivalent, quantifier-free formula before evaluating the remaining atoms using their
intuitive interpretation and the evaluations defined in Sin. For GNF to support functions
and object symbols, an approach similar to the one described Section 3 can be used.

▶ Example 10. Grounding the formula from Example 8 immediately yields the result
obtained in Example 5;

∀x[B(x)] : A(x) ∨ ∃y[C(y)] : D(x, y)

⇔
∧

v∈D:S|=B(v)

A(v) ∨ ∃y[C(y)] : D(x, y) ∀GNF
inst

⇔
∧

v∈D:S|=B(v)

A(v)
∨

w∈D:S|=C(w)

D(v, w) ∃GNF
inst

6 Architecture of the grounder

We have implemented a prototype for the GNF grounder using C++. It consists of a
parser, which parses the theory, input structure, and in- and output vocabularies before
checking them for syntactical and semantical errors. This parser was created using the parser
generator tool ANTLR [5]. This tool generates a parser that creates a parse tree for a given
grammar. Each ANTLR parser also comes with several classes that allow users to work with
the obtained parse tree. Each obtained parse tree is then transformed into an abstract syntax
tree representing the formula at hand. This abstract syntax tree can then be grounded and
simplified, which returns a new abstract syntax tree representing a formula in conjunctive
normal form. The prototype has not been extended with proof logging yet, but this is the
very next step in the development process. Developing and describing a suitable proof format
is work in progress.

8 Certified Grounding of Extensions of First-Order Logic

7 Grounding Extensions of FOL

Once the prototype has reached a state where it is possible to ground GNF with proof logs,
we will extend our scope to include some very useful extensions of first-order logic. The
reason to work with FOL and its extensions has been inspired by the expressivity of the
FO(·) [3] language used by the IDP [2] and IDP-Z3 [1] reasoning systems We illustrate the
idea of extending the present methodology by introducing a type system.

In the case of multi-sorted (or typed) logic, the vocabulary consists of a finite set
T = {T1, . . . , Tn} of types, as well as signatures for each predicate and function symbol (i.e.,
respectively of the form T1 × . . . × Tn → B and T1 × . . . × Tn → Tn+1 for n-ary symbols),
and a domain DTi

for each type Ti ∈ T . In order to model multi-sorted logic using FOL,
add the following sentences for each n-ary function f(T1, . . . , Tn) : Tn+1 in V to ensure that
they are type safe:∧

i∈1,...,n

∀x1, . . . , xn, d : f(x1, . . . , xn) = d ⇒ Ti(xi)

∀x1, . . . , xn, d : f(x1, . . . , xn) = d ⇒ Tn+1(d).

Predicates are treated similarly.
Next, for each type Ti ∈ T , add the following formula to ensure that a value’s type is

unique:∧
Tj∈T \Ti

∀x[Ti(x)] : ¬Tj(x).

Conveniently, these formulas already are (a conjunction of) formulas in GNF.
Similarly, support for theories such as arithmetic, sets, and aggregates can be added,

by extending the original theory accordingly and by instantiating where needed. Adding
support for inductive definitions is a non-trivial task that needs a different approach since
inductive definitions cannot be expressed using FOL. As such, we will reconsider inductive
definitions at a later stage in the research.

8 Conclusions and Future Work

In this paper, we introduce the normal form that lies at the core of our novel methodology
for certified grounding. We describe how a grounder built around this seemingly restrictive
normal form can be expanded to support a rich input language based on first-order logic and
its many extensions. As such, this novel methodology has the potential to support many
high-level reasoning languages. We describe the need for a certifying grounding methodology,
and introduce the requirements for a proof system for certified grounding. Given that the
goal is to device a methodology which is certifying, this method could form an important
step towards fully trustworthy reasoning systems. To make this methodology as applicable
as possible, we invite insights on how a certifying grounder could be integrated into existing
solving pipelines, including any requirements that must be met to easily incorporate this
methodology into existing systems.

D. Van Caudenberg, C. Cantero, M. Anders, B. Bogaerts 9

References
1 Pierre Carbonnelle, Simon Vandevelde, Joost Vennekens, and Marc Denecker. Interactive

configurator with fo(.) and idp-z3, 2023. URL: https://arxiv.org/abs/2202.00343, arXiv:
2202.00343.

2 Broes De Cat, Bart Bogaerts, Maurice Bruynooghe, Gerda Janssens, and Marc Denecker.
Predicate logic as a modeling language: the IDP system. In Michael Kifer and Yanhong Annie
Liu, editors, Declarative Logic Programming: Theory, Systems, and Applications, pages
279–323. ACM / Morgan & Claypool, 2018. doi:10.1145/3191315.3191321.

3 Marc Denecker and Eugenia Ternovska. A logic of nonmonotone inductive definitions. ACM
Trans. Comput. Log., 9(2):14:1–14:52, 2008. doi:10.1145/1342991.1342998.

4 Michaelis Michael and A. V. Townsend. Binary quantification systems. Notre Dame Journal
of Formal Logic, 36(3):382–395, 1995. doi:10.1305/ndjfl/1040149354.

5 Terence Parr. The Definitive ANTLR 4 Reference. Pragmatic Bookshelf, 2nd edition, 2013.
6 Deepak Ramachandran and Eyal Amir. Compact propositional encoding of first-order theories.

In Proceedings of the 20th National Conference on Artificial Intelligence - Volume 1, AAAI’05,
page 340–345. AAAI Press, 2005.

7 Stephan Schulz. A comparison of different techniques for grounding near-propositional cnf
formulae. In Proceedings of the Fifteenth International Florida Artificial Intelligence Research
Society Conference, page 72–76. AAAI Press, 2002.

8 Johan Wittocx, Maarten Mariën, and Marc Denecker. Grounding with bounds. In Dieter Fox
and Carla P. Gomes, editors, Proceedings of the Twenty-Third AAAI Conference on Artificial
Intelligence, AAAI 2008, Chicago, Illinois, USA, July 13-17, 2008, pages 572–577. AAAI
Press, 2008. URL: http://www.aaai.org/Library/AAAI/2008/aaai08-091.php.

9 Johan Wittocx, Maarten Mariën, and Marc Denecker. Grounding FO and FO(ID) with bounds.
J. Artif. Intell. Res., 38:223–269, 2010. doi:10.1613/jair.2980.

https://arxiv.org/abs/2202.00343
https://arxiv.org/abs/2202.00343
https://arxiv.org/abs/2202.00343
https://doi.org/10.1145/3191315.3191321
https://doi.org/10.1145/1342991.1342998
https://doi.org/10.1305/ndjfl/1040149354
http://www.aaai.org/Library/AAAI/2008/aaai08-091.php
https://doi.org/10.1613/jair.2980

	1 Introduction
	2 Preliminaries
	3 Grounding first-order logic
	4 Ground Normal Form
	5 Grounding GNF
	6 Architecture of the grounder
	7 Grounding Extensions of FOL
	8 Conclusions and Future Work

