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Abstract15

Operational imbalances in high-volume food manufacturing warehouses frequently lead to critical16

bottlenecks, diminishing overall throughput and efficiency. This paper presents Constraint Program-17

ming (CP) and Mixed-Integer Linear Programming (MILP) models designed to rebalance ingestion18

workloads by optimally assigning articles to input machines, reconfiguring an existing warehouse.19

The model considers aggregated workload over discretized time periods and incorporates practical20

constraints to ensure operational feasibility. Applied to data from a central storage facility of one of21

Spain’s largest food manufacturers that handles facility multimillion box per year. In this paper our22

approach demonstrates a potential 30% improvement in workload balance with approximately 10%23

of slot reconfigurations. This proactive rebalancing offers a robust strategy for mitigating congestion24

and enhancing the efficiency of critical food supply chain nodes.25
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1 Introduction38

Warehousing is a central piece of modern supply chains, providing essential buffering capacity,39

allowing asynchrony between production and dispatch schedules, enabling efficient order40
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fulfillment, and supporting diverse manufacturing and distribution strategies. The increasing41

adoption of automation in warehouse facilities has introduced new levels of efficiency and speed,42

but also new operational complexities [4]. Efficient warehouse operations are important43

in modern supply chains, particularly for high volume facilities like those in the food44

manufacturing sector [11].45

Extensive research has been dedicated to challenges such as the Storage Location Assign-46

ment Problem (SLAP), which aims to determine optimal product placements to minimize47

travel times and restocking costs, as reviewed by [5]. Approaches to SLAP vary widely, from48

traditional integer programming (IP) to more recent applications of Constraint Programming49

(CP), which has demonstrated significant advantages in finding solutions for large, diverse50

product instances [12]. Furthermore, adaptive AI-driven algorithms have been developed for51

SLAP to handle multiple, potentially non-linear objectives [13].52

Beyond storage assignment, other operational facets significantly impact warehouse53

throughput. For instance, Constraint Programming has also been successfully applied to54

optimize stochastic inventory systems, managing uncertainties in demand and costs [10], and55

to enhance energy efficiency alongside time performance in automated storage and retrieval56

systems (AS/RS [9, 3]) through advanced control policies [6]. While these areas address57

critical aspects of product storage and retrieval, the initial phase of product ingestion and58

its distribution among processing units presents a distinct set of challenges. Specifically,59

imbalances in workload assigned to input machines can create severe bottlenecks that60

propagate through the system, a problem particularly acute in high-throughput environments61

like the one motivating this study. Our work addresses this specific challenge of minimizing62

operational imbalances by strategically assigning tasks to input machines.63

This paper addresses the problem of minimizing such operational imbalances by stra-64

tegically assigning tasks to input machines. Unlike approaches that rely on simulation-based65

optimization (derivative-free, black box systems), or AI-driven heuristics suitable for highly66

non-linear problems such as adaptive SLAP [13], we propose a simplified model-based ap-67

proach using Constraint Programming (CP) and Mixed-Integer Linear Programming (MILP).68

The core idea is that the total amount of work assigned to each machine serves as a direct69

proxy for its potential to become a bottleneck. This way, we can proactively mitigate70

congestion by balancing this workload across all input machines.71

2 Mathematical Model for Ingestion Workload Balancing72

This section details the models developed to balance ingestion workload. The primary goal73

is to assign articles to input machines such that the workload is as equitable as possible for74

each transportation lane and input machine over given time periods, minimizing potential75

bottlenecks in the buffers. We will first explain the input mechanism and assumptions before76

introducing the formalization.77

2.1 Preliminaries of the input mechanism78

The warehousing system processes incoming stock units (boxes), each of a specific article79

type. The journey of these boxes from production to storage involves several stages:80

1. Boxes are produced at different points in time from different points of the factory and81

place onto transportation lanes.82

2. Boxes are assigned to a specific FIFO storage lane. This process is highly dependent83

on available storage, current workload and other variables. For the purposes of this84
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discussion, we can consider this process stochastic.85

3. To reach the storage lane, the box has to be placed by an input machine; and to be picked86

up by the input machine, it must first be placed on an associated buffer, of which there87

is one buffer per transportation lane and input machine. So, to reach the storage lane,88

the box is automatically routed to the corresponding buffer.89

4. Input machines pick boxes from their buffers and place them into the storage lanes. Each90

input machine has storage matrices associated to it, where each cell of the matrix is a91

storage lane. Each storage matrix is assigend to only one input machine.92

Storage Matrix

Production

Box A

Production

Box B

. . .

. . .

Transportation Lane

Buffer Input Machine

Other buffers

FIFO
Storage

Lane

Output System

Figure 1 End-to-end flow from dual production lines to output, highlighting the FIFO Storage
Lane within the Storage Matrix.

A schematic of this flow is shown in Figure 1.93

The configuration of article assignments within the storage matrix directly influences94

buffer workload distribution. This dependency emerges from two factors: (1) articles exhibit95

heterogeneous production rates and packaging densities, generating variable pressure on the96

buffers; (2) temporal production schedules and spatial distribution across the factory create97

distinct transportation pathways that affect buffer utilization through transportation lane98

work unbalance.99

The most critical point of failure of this system is the buffers, which have small capacities.100

A full buffer can cause incoming boxes for that buffer to block the main transportation lane,101

blocking flow to other input machines downstream on the same lane. This is illustrated102

in Figure 2. Where one of the buffer assigned to input machine c = 2 is full, which could103

potentially cause a blockage.104

Balanced workload distribution prevents system failure propagation. When machines105

require maintenance or experience errors imbalanced systems exhibit higher failure rates106

due to workload concentration. Balanced configurations reduce overload probability by107

distributing excess capacity across multiple buffers, enabling fault tolerance by trying to108

prevent exceeding buffer limits.109

CP/SAT 2025
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To other machines
4 Transportation lanes

Figure 2 Depiction of two storage matrices of 12 x 4 storage lanes of one input machine (c = 1),
with its corresponding 4 buffers. Input machine (c = 2) partially depicted with the four buffers. There
are 96 storage lanes depicted, going from M1,1 = R to M1,96, product types (R, E, W, Q, L, D, ...)
are provided as examples.

2.2 Model assumptions and abstractions110

The formulation employs several abstractions that balance computational tractability with111

capturing warehouse dynamics for relocation strategies. Ideal models would be able to112

consider individual events, exact time blocks, and storage capacities. Such precise models113

were tried by the authors but were deemed intractable and inefficient, both because of their114

computational complexity and their difficulty generalizing to unseen circumstances.115

Experimentally, we have seen that when multiple input machines handle the same product116

type, incoming workload from each lane distributes roughly equally among them, so we take117

this as our basic modeling assumption. Our approach deals instead with discretized time118

blocks, where the workloads of the machines are treated as continuous, aggregated quantities119

distributed across product types and processing lanes. The model will therefore focus on the120

combinatorial challenge of determining which sets of input machines should handle which121

product types.122

The model deliberately avoids explicit representation of physical warehouse layout,123

machine travel times, detailed buffer dynamics beyond their influence on lane workload124

requirements, or complex storage routing decisions; we leave this optimization to the next125

level of the hierarchy responsible for handling execution.126

The model operates within predefined warehousing constraints: each product type127

must be assigned to a specific number of input machines, and each machine must handle a128

predetermined number of different products. These constraints acknowledge practical realities129

where complete system redesigns are often infeasible. For instance, a product might always130

require three input machines for adequate processing capacity, but the model determines131

which specific three machines provide the best overall system performance. This significantly132

reduces the search space while ensuring proposed solutions align with realistic operational133

change objectives. Moreover, certain extra considerations are included in the formulation,134

like blocking certain items or slots from being reordered.135
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2.2.1 Sets, indices, maps, parameters and decision variables136

In this subsection, we introduce the sets, indices, and mappings used to define the model137

structure, the parameters that capture input data and system constraints, and the decision138

variables that will be optimized.139

Sets, indices and maps140

A: Set of unique articles, indexed by a.141

X : Set of unique articles (X ⊆ A) that cannot be reordered, indexed by x.142

C: Set of input machines indexed by c.143

T : Set of discrete time periods under consideration, indexed by t.144

L: Set of transportation lanes, indexed by l.145

Ic: Set of storage slots of the matrices associated with machine c ∈ C, indexed by j.146

Ψ: The set of all addressable machine-slot pairs, Ψ = {(c, j) | c ∈ C, j ∈ Ic}.147

M : Ψ → A. In expressions, Mc,j denotes the value M(c, j) ∈ A, which is the article148

assigned to the slot j ∈ Ic of input machine c ∈ C.149

By this formulation, the number of buffers in the system is |L| · |C|.150

Parameters151

Oa,l,t: Total number of boxes associated with article a arriving in time period t through152

transportation lane l. This is a non-negative real number.153

Ga,c: A binary parameter that equals 1 if article a is assigned to input machine c154

and 0 otherwise. This represents the existing assignment configuration. Algebraically,155

Ga,c = 1 ⇐⇒ ∃j ∈ Ic such that Mc,j = a; otherwise, Ga,c = 0.156

Na: The number of distinct input machines to which article a is assigned in the map G.157

This is a positive integer constant for each article a, calculated as Na =
∑

c∈C Ga,c.158

Nc: The number of distinct articles assigned to input machine c in the map G. This is a159

positive integer constant for each input machine c, calculated as Nc =
∑

a∈A Ga,c.160

Ra,l,t: Per-input machine workload for article a in time period t on transportation lane l.161

This is calculated as Ra,l,t = Oa,l,t/Na, assuming the total workload Oa,l,t for an article162

is evenly distributed among the Na input machines . This is a non-negative real number.163

λ: Scale factor used for integer approximation in CP encoding. In MILP, λ = 1.164

W̄l,t: Average workload in time period t through transportation lane l, computed as165

W̄l,t = λ
|C|

∑
a∈A Oa,l,t. This value serves as a target for balanced workload distribution166

and is equivalent to the actual average workload 1
|C|

∑
c∈C Wc,l,t. This is a non-negative167

real number in MILP, and a positive integer in CP.168

K: maximum number of allowed changes between the current configuration (G) and the169

new configuration. This is a positive integer.170

Decision Variables171

Sa,c: A binary variable that equals 1 if article a is assigned to be handled by input172

machine c, and 0 otherwise.173

Wc,l,t: A non-negative (continuous in MILP; integer in CP) variable representing the174

total workload assigned to input machine c in time period t for transportation lane l.175

Ec,l,t: A non-negative continuous (continuous in MILP; integer in CP) variable represent-176

ing the deviation (or error) of machine c workload from the target workload (W̄l,t) in177

time period t for transportation lane l.178

CP/SAT 2025
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The domains of these variables are:179

Sa,c ∈ {0, 1} ∀a ∈ A, ∀c ∈ C (1)180

Wc,l,t ≥ 0 ∀c ∈ C, ∀t ∈ T , ∀l ∈ L (2)181

Ec,l,t ≥ 0 ∀c ∈ C, ∀t ∈ T , ∀l ∈ L (3)182

2.3 Constraints & objective183

The objective is to minimize the sum of absolute deviations of each input machine’s workload184

from the target average workload, across all input machines and all time periods. This185

promotes an equitable distribution of work.186

min
∑
c∈C

∑
l∈L

∑
t∈T

Ec,l,t (4)187

The model’s assignments and workload calculations are governed by the following con-188

straints.189

Workload Calculation for input machines: The total workload Wc,t for each input190

machine c in each time period t is the sum of the per-input machine workloads Ra,t for all191

articles a assigned to it:192

Wc,l,t =
∑
a∈A

Sa,c · Ra,l,t · λ ∀c ∈ C, ∀t ∈ T , ∀l ∈ L (5)193

Deviation Calculation: The deviation variable Ec,t must capture the absolute difference194

between the actual workload Wc,t and the target average workload W̄l,t. These constraints195

ensure Ec,l,t = |Wc,l,t − W̄l,t|. We linearize the constraints as follows:196

Ec,l,t ≥ Wc,l,t − W̄l,t ∀c ∈ C, ∀t ∈ T , ∀l ∈ L (6)197

Ec,l,t ≥ W̄l,t − Wc,l,t ∀c ∈ C, ∀t ∈ T , ∀l ∈ L (7)198

Assignment Constraints: These constraints ensure that the assignment rules are met:199

1. Each article a must be assigned to exactly Na distinct input machines:200 ∑
c∈C

Sa,c = Na ∀a ∈ A (8)201

2. Each input machine c must be assigned exactly Nc distinct articles:202 ∑
a∈A

Sa,c = Nc ∀c ∈ C (9)203

Since both parameters Na and Nc are derived from an existing valid solution G, this ensures204

that the problem is feasible satisfying Equation (8) and (9) exists. Specifically, the total205

number of assignment slots must be equal:
∑

a∈A Na =
∑

c∈C Nc.206

Non reassignation policy: Some articles must not be reassigned due to warehouse207

logistics constraints:208

Sx,c = 1 ∀c ∈ C, ∀x ∈ X (10)209

Maximum number of changes: The resulting configuration must have at most K changes,210

which is equivalent to saying that
∑

c∈C
∑

a∈A Ga,c ⊕ Sa,c ≤ K:211 ∑
c∈C

∑
a∈A s.t. Ga,c=1

Sa,c ≥ −K +
∑
c∈C

Nc (11)212
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3 Experimental evaluation213

We investigate the trade-offs between solution quality, the extent of allowed changes from214

an initial configuration, and the computational effort required. To test this, we selected 25215

days of production as historical data and 15 future days as validation data out of real-world216

data from April and May of 2025. The reason for requiring a set of validation data is that217

the articles/time distribution is not guaranteed to be stable over time, and may change218

as the factory evolves, therefore, we want to ensure optimization on past historical data219

corresponds to improvements in the future. We discretized time intervals in groups of 2220

hours which can approximately fit production patterns throughout the day. We also filtered221

these intervals, ensuring only periods when bottlenecks usually happen to be considered. The222

MILP problems were solved with SCIP [2, 1] and the CP version was solved with OR-Tools223

[8, 7], both were stopped at 1% optimality gap. For the CP version, λ was tested at many224

different values; for visual clarity, we picked λ = 2 and λ = 10 as representatives.225

0 20 40 60 80 100 120 140
Number of Changes (K)

60

70

80

90

100

Lo
ss

 (%
 o

f O
rig

in
al

 S
ol

ut
io

n)

MILP - Historical
MILP - Validation
CP ( =2) - Historical
CP ( =2) - Validation
CP ( =10) - Historical
CP ( =10) - Validation

Figure 3 % Improvement as a function of K-distance for CP and MILP models based on historical
data and validation data.

For reference of the experiment, |A| = 676, |X | = 286, |C| = 15, |L| = 4, for historical:226

|T | = 29 and for validation: |T | = 27.227

In the following graphs, a K-distance of 0 zero changes corresponds to the initial assign-228

ment, where the changes correspond to the accumulated degrees of freedom in the article229

assignment (Sa,c). Figure 3 shows how the loss varies as the number of allowed changes (K)230

increases. Both approaches, using CP and using MILP, are shown on the graph. The x-axis231

shows the accumulated K-distance, and the y-axis shows the corresponding improvement loss.232

The improvement is computed with respect to the original configuration in the objective233

function (0 steps). Historical and validation are differentiated with solid and dashed lines234

respectively. Interestingly, the CP approximation version equivalent performance levels to235

the MILP version with a very low value of λ.236

As the accumulated number of changes K increases, the historical loss demonstrates a237

corresponding improvement, with the cost function achieving further reduction due to the238

increased degrees of freedom available for optimization. This enhanced performance on the239

historical data is accompanied by improvements on the validation data, though the magnitude240

of validation set improvement is more modest compared to the historical improvements. The241

absence of performance plateaus on the validation set suggests that the current optimization242

CP/SAT 2025
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has not yet reached the limits of achievable performance.243

At the tested simulations, we achieve a 30% improvement in balance buffer workload244

allocation with around 140 to 150 changes.This is significant, since the warehouse is composed245

of approximately 1500 slots, suggesting that at early stages a significant improvement in246

rebalancing may bring substantial long-term efficiency gains.247
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Figure 4 Cumulative Solution Time as a function of K-distance for both MILP and CP models

This analysis examines the computational time requirements of different optimization248

steps as a function of the target K-distance. Figure 4 presents a comparative evaluation of249

cumulative solution time versus K-distance for absolute optimization. and various stepped250

optimization approaches, where the x-axis represents the total K-distance achieved and the251

y-axis depicts the cumulative solution time. The presented CP approach performs slightly252

worse than the MILP version at λ = 10, but offer a very similar performance profile at λ = 2,253

even though a perfect approximation of MILP could only be achieved with λ → ∞.254

We terminated the experiments at a distance of 150, where the solution time begins255

to exhibit exponential growth characteristics. This phenomenon can be attributed to the256

underlying structure: while proving optimality for highly disordered warehouse configura-257

tions is computationally tractable, the complexity increases dramatically as the warehouse258

configuration approaches more organized states.259

4 Conclusions260

The proposed CP and MILP workload balancing models achieve a 30% improvement in261

balance buffer workload allocation with ≈ 10% changes in the slots. With similar performance262

at a well tuned λ parameter. Historical improvements consistently translate to meaningful263

performance gains on unseen data, with no observed performance plateaus indicating potential264

for further enhancement. Solution time exhibits exponential growth at certain deviations265

from the original configuration, reflecting the complexity transition from disordered to266

organized configurations. Larger step sizes provide early computational advantages but267

incur higher penalties in the exponential curve. Future work should integrate predictive268

modeling to address seasonal variations and changing workload patterns and should integrate269

regularization techniques to enhance solution robustness and adaptability.270
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