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This extended abstract presented at the CP/SAT Doctoral Program summarizes and as such
builds heavily on the corresponding CP paper [14]. We refer to the CP paper for declaration
of funding, acknowledgements, and references to supplementary material. In addition, the
pseudo-Boolean solvers RoundingSat and Sat4j, for which we developed proof logging in this
paper, have been submitted to the Pseudo-Boolean Competition 2025 presented at SAT 2025.

Introduction. Combinatorial optimization is a major success story in computer science.
Astonishing progress over the past decades in the performance of combinatorial solvers allows
these solvers to successfully solve real-world problems in model checking [2], cryptanalysis [16],
planning [20], and many more application domains. These increases in performance have come
at the cost of increasing the complexity of the algorithm and the solver software, however.
As a result, even mature solvers have bugs, and sometimes incorrectly claim optimality or
infeasibility, or even return “solutions” that actually do not satisfy all constraints [4, 9]. Such
errors preclude the application of solvers to domains where correctness is crucial.

The Boolean satisfiability (SAT) community has pioneered the use of certifying solvers
to address this problem. Certifying solvers use proof logging to output a machine-verifiable
proof that the answer that the solver produced is correct. In the now de facto standard
DRAT [22] format, such a proof essentially consists of just the clauses that the solver has
learned. As a result, the overhead of proof generation is generally at most 10% of the solving
time, while proof checking can be done within a factor 10 of the solving time. Proof checker
also come with a formally verified backend, which means that correctness is certified by the
strongest guarantees offered by formal methods [21].

The most successful approach to port these successes to more expressive paradigms is
pseudo-Boolean (PB) proof logging, which uses 0–1 linear constraints, and has been applied
in SAT-based optimization (MaxSAT) [1, 13], subgraph solving [10, 11], and constraint
programming [17, 18], among others. In particular, enabling proof logging can increase solver
runtimes by more than a factor 10, and proof checking can be roughly a factor 1,000 slower
than solving. These overheads are orders of magnitude worse than SAT proof logging.

In this work, we present—to the best of our knowledge, for the first time—fast and
practically feasible certified solving for a combinatorial optimization problem. We show how
to provide proof logging for the state-of-the-art pseudo-Boolean solvers RoundingSat [6, 7, 8]
and Sat4j [15], covering all techniques used in these solvers, and implement this in the
pseudo-Boolean proof checker VeriPB and the formally verified backend CakePB. As our
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logging VeriPB VeriPB + CakePB
solver max 95% med max 95% med RL max 95% med RL

RoundingSat 1.463 1.204 1.027 16.58 7.10 1.34 8 19.17 9.22 1.43 10
Sat4j Cutting Planes 1.517 1.142 1.026 3.41 1.39 0.50 0 3.83 1.60 0.54 0

Sat4j Resolution 1.705 1.417 1.097 336.43 18.99 1.14 3 338.31 19.35 1.28 3

Table 1 Summary of the experimental results. ‘max’ stands for the maximum overhead, ‘95%’
for the overhead within which 95% of the instances could be logged/checked, ‘med’ for the median
overhead, and ‘RL’ (Resource Limit) for the number of instances that met a resource limit (10h
checking time (3 instances for Sat4j Resolution), 14GB of memory (9 instances for RoundingSat), or
100GB of disk space (1 instance for RoundingSat)).

main result, we can provide formally verified conclusions within a factor 20 of the solving
time, getting close to the overhead factor of 9 traditionally required in the SAT competitions.

To achieve this, we develop proof logging for a number of more advanced techniques
in RoundingSat for which it is much less obvious how to express the reasoning in terms of
pseudo-Boolean proof rules, including linear programming integration [6] and core-guided
optimization [7]. In addition, we optimize various aspects of both the proof logging and
checking, in order to reduce the overhead to an acceptable level.

Preliminaries. We now provide a very brief summary of the VeriPB proof system [3, 12],
which is based on the cutting planes proof system [5]. The VeriPB proof system operates on
a database of 0–1 linear inequalities

∑
i aiℓi ≥ A. Given two such inequalities, the cutting

planes proof system allows adding them. For a positive integer c, we can multiply
∑

i aiℓi ≥ A

by c to obtain
∑

i(cai)ℓi ≥ cA, or divide by c and round to obtain
∑

i

⌈
ai

c

⌉
ℓi ≥

⌈
A
c

⌉
. Finally,

we can saturate a constraint
∑

i aiℓi ≥ A to obtain
∑

i min{ai, A}ℓi ≥ A. In the VeriPB
proof syntax, these operations are implemented using reverse Polish notation (pol).

These rules can only derive implied constraints. In addition, VeriPB supports the so-called
redundance-based strengthening (or redundance for short). This rule can, among other things,
be used to define new variables.

Linear Programming Integration. RoundingSat is tightly integrated with a linear program-
ming (LP) solver [6]. Most aspects of this integration only take (positive) linear combinations
of constraints and can therefore be logged directly with pol lines. However, mixed-integer
rounding (MIR) cut generation is an exception for two reasons. First, the MIR cut is not
natively supported by VeriPB. Second, the cut generation procedure turns inequalities into
equalities by introducing non-Boolean integral slack variables. Since the proof system only
supports 0–1 valued variables, these slack variables cannot be directly encoded. Instead, we
use a proof by contradiction to log a MIR cut.

Core-Guided Optimization. RoundingSat solves optimization problems using linear search,
core-guided search, or a hybrid combination of the two [7]. In core-guided optimization,
we iteratively derive constraints (called core constraints) showing that the objective of the
given minimization problem cannot attain its current lower bound. After that, we introduce
(Boolean) counter variables in the derived core constraint. These counter variables indicate
that the core is actually stronger (i.e., has a larger right hand side), and effectively turn
the core constraint into an equality. This equality is then used to rewrite the objective. As
a part of the logging procedure, we make heavy use of the redundance rule to define the
counter variables for the core constraints.
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Implementation. We now discuss some optimizations implemented in the solvers and the
checkers. In RoundingSat, we optimized logging of so-called unit constraints that state that
a variable must take some fixed value, as well as simplifications of constraints using such unit
constraints. In the proof checker VeriPB, we optimized solution checking. Finally, in CakePB
two major optimizations were done. Firstly, constraint simplifications are optimized by
merging multiple consecutive simplications before applying them to the constraint. Secondly,
the efficiency of the map keeping track of occurrences of variables in constraints was improved.

Experiments. In Table 1 we summarize some experimental results, run on the instances
from the Pseudo-Boolean Competition 2024 [19]. Overall, RoundingSat solved 555 instances,
Sat4j Cutting Planes solved 322 instances, and Sat4j Resolution solved 366 instances. Out
of these, proof checking using VeriPB and CakePB was successful on all but 13 instances,
while the remaining instances could not be checked due to our resource limits: a memory
limit on 9 instances solved by RoundingSat, a disk space limit on one instance solved by
RoundingSat, and a timeout on 3 instances solved by Sat4j Cutting Planes. All in all, these
results show that proof logging for pseudo-Boolean solving is now practically feasible.

References

1 Jeremias Berg, Bart Bogaerts, Jakob Nordström, Andy Oertel, Tobias Paxian, and Dieter
Vandesande. Certifying without loss of generality reasoning in solution-improving maximum
satisfiability. In CP ’24, volume 307 of LIPIcs, pages 4:1–4:28, September 2024.

2 Armin Biere and Daniel Kröning. SAT-based model checking. In Edmund M. Clarke,
Thomas A. Henzinger, Helmut Veith, and Roderick Bloem, editors, Handbook of Model
Checking, chapter 10, pages 277–303. Springer, December 2018.

3 Bart Bogaerts, Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Certified dominance
and symmetry breaking for combinatorial optimisation. Journal of Artificial Intelligence
Research, 77:1539–1589, August 2023. Preliminary version in AAAI ’22.

4 Robert Brummayer, Florian Lonsing, and Armin Biere. Automated testing and debugging of
SAT and QBF solvers. In SAT ’10, volume 6175 of LNCS, pages 44–57. Springer, July 2010.

5 William Cook, Collette Rene Coullard, and György Turán. On the complexity of cutting-plane
proofs. Discrete Applied Mathematics, 18(1):25–38, November 1987.

6 Jo Devriendt, Ambros Gleixner, and Jakob Nordström. Learn to relax: Integrating 0-1 integer
linear programming with pseudo-Boolean conflict-driven search. Constraints, 26(1–4):26–55,
October 2021. Preliminary version in CPAIOR ’20.

7 Jo Devriendt, Stephan Gocht, Emir Demirović, Jakob Nordström, and Peter Stuckey. Cutting
to the core of pseudo-Boolean optimization: Combining core-guided search with cutting planes
reasoning. In AAAI ’21, pages 3750–3758, February 2021.

8 Jan Elffers and Jakob Nordström. Divide and conquer: Towards faster pseudo-Boolean solving.
In IJCAI ’18, pages 1291–1299, July 2018.

9 Xavier Gillard, Pierre Schaus, and Yves Deville. SolverCheck: Declarative testing of constraints.
In CP ’19, volume 11802 of LNCS, pages 565–582. Springer, October 2019.

10 Stephan Gocht, Ciaran McCreesh, Magnus O. Myreen, Jakob Nordström, Andy Oertel, and
Yong Kiam Tan. End-to-end verification for subgraph solving. In Proceedings of the 38th
AAAI Conference on Artificial Intelligence (AAAI ’24), pages 8038–8047, February 2024.

11 Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Subgraph isomorphism meets cutting
planes: Solving with certified solutions. In IJCAI ’20, pages 1134–1140, July 2020.

12 Stephan Gocht and Jakob Nordström. Certifying parity reasoning efficiently using pseudo-
Boolean proofs. In AAAI ’21, pages 3768–3777, February 2021.



XX:4 Practically Feasible Proof Logging for Pseudo-Boolean Optimization (Ext. Abstr.)

13 Hannes Ihalainen, Andy Oertel, Yong Kiam Tan, Jeremias Berg, Matti Järvisalo, Magnus O.
Myreen, and Jakob Nordström. Certified MaxSAT preprocessing. In IJCAR ’24, volume 14739
of LNCS, pages 396–418. Springer, July 2024.

14 Wietze Koops, Daniel Le Berre, Magnus O. Myreen, Jakob Nordström, Andy Oertel, Yong Kiam
Tan, and Marc Vinyals. Practically feasible proof logging for pseudo-Boolean optimization.
In Proceedings of the 31st International Conference on Principles and Practice of Constraint
Programming (CP ’25), August 2025. To appear.

15 Daniel Le Berre and Anne Parrain. The Sat4j library, release 2.2. Journal on Satisfiability,
Boolean Modeling and Computation, 7:59–64, July 2010.

16 Fabio Massacci and Laura Marraro. Logical cryptanalysis as a SAT problem. Journal of
Automated Reasoning, 24:165–203, February 2000.

17 Matthew McIlree and Ciaran McCreesh. Proof logging for smart extensional constraints. In
CP ’23, volume 280 of LIPIcs, pages 26:1–26:17, August 2023.

18 Matthew McIlree, Ciaran McCreesh, and Jakob Nordström. Proof logging for the circuit
constraint. In CPAIOR ’24, volume 14743 of LNCS, pages 38–55. Springer, May 2024.

19 Pseudo-Boolean competition 2024. https://www.cril.univ-artois.fr/PB24/, August 2024.
20 Dominik Schreiber. Lilotane: A lifted SAT-based approach to hierarchical planning. Journal

of Artificial Intelligence Research, 70:1117–1181, March 2021.
21 Yong Kiam Tan, Marijn J. H. Heule, and Magnus O. Myreen. cake_lpr: Verified propagation

redundancy checking in CakeML. In TACAS ’21, volume 12652 of LNCS, pages 223–241.
Springer, March-April 2021.

22 Nathan Wetzler, Marijn J. H. Heule, and Warren A. Hunt Jr. DRAT-trim: Efficient checking
and trimming using expressive clausal proofs. In SAT ’14, volume 8561 of LNCS, pages
422–429. Springer, July 2014.

https://www.cril.univ-artois.fr/PB24/

