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Abstract9

The Multi-Skill Project Scheduling Problem (MSPSP) is a variant of the paradigmatic Resource-10

Constrained Project Scheduling Problem (RCPSP). In the RCPSP the goal is to find a start time for11

each one of the activities (schedule) of a project such that the makespan is minimised. The schedule12

must satisfy a set of constrains on resources and precedences. MSPSP extends the RCPSP since in13

the MSPSP the activities do not directly ask for resources but they ask for skills. These skills are14

supplied by renewable resources, and every resource is specialized to master a subset of the skills.15

Logic-based approaches have shown to be state-of-the-art for solving many scheduling problems. In16

this work we propose a MaxSAT and a pseudo-Boolean Constraints encoding for MSPSP.17
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1 Introduction21

The Resource-Constrained Project Scheduling Problem (RCPSP) [2] is a fundamental schedul-22

ing challenge that serves as a model for a wide range of industrial applications. Due to its23

broad applicability, it has been extensively studied and continues to attract attention today.24

In the RCPSP, a set of non-preemptive activities must be scheduled (i.e., setting their start25

times) while adhering to both precedence and resource constraints. Precedence constraints26

ensure that certain activities cannot begin until others have been completed, while resource27

constraints prevent the total resource usage at any given time from exceeding the available28

supply. The primary objective is typically to minimize the total duration of the project, also29

known as the makespan. There exist many variants of this problem, we refer the reader30

to [10] for a complete survey on different variations and extensions of the RCPSP.31

Among these variants is the Multi-Skill Project Scheduling Problem (MSPSP), a general-32

ization of the RCPSP. In the MSPSP, activities require specific skills rather than resources33

directly. These skills are provided by renewable resources, each of which is specialized in a34

subset of the available skills. For example, resources may represent workers, and the skills35

correspond to their individual abilities. The resource constraints state that one resource can36

only work at one skill of one activity at a time, and that a resource can only supply skills37

that it masters. The resources are unary, i.e., they can only supply one unit of skill at a time,38

but the activities may require many units of each skill. Also, the set of resources that an39

activity is using cannot change at any moment of execution, i.e., the resource usage of the40

activities is also non-preemptive.41

It was argued in [3] that an instance of MSPSP can be reformulated as an instance of the42

Multi-Mode Resource-Constrained Project Scheduling Problem (a related variant within the43

RCPSP family) by representing different combinations of resource assignments to an activity44
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as distinct execution modes. However, this transformation leads to a combinatorial explosion45

as determining whether there exists a combination of modes that satisfies the non-renewable46

resource constraint, which the Multi-mode variant also considers, is already NP-hard. As a47

result, the MSPSP is strongly NP-hard [3].48

Several MILP models have been proposed for MSPSP [3, 8], with time-indexed for-49

mulations showing particularly strong performance. In these models, a set of cumulative50

cuts—analogous to the renewable resource constraints in the RCPSP—were introduced, sig-51

nificantly accelerating the solving process. Later, [13] developed a constraint programming52

(CP) model combined with a tailored search strategy, solved using a Lazy Clause Generation53

(LCG) solver. In their approach, the cumulative cuts are also exploited, interpreted in the54

CP context as implied or redundant constraints that enhance propagation.55

There exist several works showing the convenience of using logic-based methods to solve56

scheduling problems and in particular RCPSP and variants. In these works the models are57

SAT modulo theories models (SMT): in [7], precedence and resource constraints were encoded58

numerically using Linear Integer Arithmetic theory, then in [4] it was shown that encoding59

resource constraints (that are basically pseudo-Boolean constraints) directly into SAT was a60

better choice and in [5, 6] further sophisticated encodings to SAT of those pseudo-Boolean61

Constraints provided an even better performance. Notice that these last models only delegate62

precedence constraints to the difference logic theory, while the rest of the problem is fully63

encoded into SAT. The optimization process in the last works was delegated to iterative64

Satisfiability checks for tighter upper bounds.65

In this work we propose to solve the MSPSP directly with a MaxSAT encoding and with66

a pseudo-Boolean encoding. This way we try to answer the following question: are current67

pseudo-Boolean solvers appropriate tools to solve scheduling problems, in particular MSPSP,68

where there occur plenty of pseudo-Boolean constraints or is it better to encode them into69

SAT?70

We hope this work further stimulates the upcoming research of the PhD thesis that will71

revolve in the use of logic-based tools for scheduling. These tools will be used as black-boxes72

for a model-and-solve approach and as cristal-boxes where we aim at tunning them to be73

better suited for the problem at hand via specialized propagators or heuristics.74

2 The MSPSP75

The Multi-Skill Project Scheduling Problem (MSPSP) is defined by a tuple (V, p, E, R, L, m, b)76

where:77

V = {A0, A1, ..., An, An+1} is a set of activities. Activities A0 and An+1 are dummy78

activities that represent, by convention, the start and the end of the schedule, respectively.79

The set of non-dummy activities is defined by A = {A1, ..., An}.80

p ∈ Nn+2 is a vector of naturals, with pi being the duration of activity Ai. For the81

dummy activities, p0 = pn+1 = 0, and pi > 0, ∀Ai ∈ A.82

E is a set of pairs of activities representing the precedence relations between them.83

Concretely, (Ai, Aj) ∈ E iff the execution of activity Ai must precede that of activity84

Aj , i.e., activity Aj must start after activity Ai has finished. We assume that we are85

given a precedence activity-on-node graph G = (V, E) that contains no cycles, that A0 is86

a predecessor of all other activities and An+1 is a successor of all other activities.87

R = {R1, ..., Rv} is a set of unary renewable resources.88

L = {L1, ..., Ls} is a set of skills.89
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m ∈ Bv×s is a Boolean matrix, with mk,l being the true iff resource Rk masters the skill90

Ll.91

b ∈ N(n+2)×s is a matrix of naturals, where bi,l represents the number of resources92

mastering skill Ll that activity Ai requires during its execution. The start and end93

dummy activities do not require skills, i.e., b0,l = bn+1,l = 0 for any skill Ll.94

In this context, a solution of the MSPSP is a schedule and a resource assignment95

minizing the total makespan. A schedule S is defined as a vector of natural numbers96

S = (S0, S1, . . . , Sn, Sn+1), where each Si represents the start time of activity Ai. The start97

time of the dummy initial activity is set to S0 = 0, and the start time of the dummy last98

activity Sn+1 must be minimized. A resource assignment RA ∈ B(n+2)×v×s is defined as a99

matrix of three dimensions of Booleans, where RAi,k,l is true iff activity Ai uses resource Rk100

to perform skill Ll.101

102

Hence, MSPSP can be stated as follows.103

Minimise:
Sn+1

subject to the following constraints:104

105

Precedence contraints state that, for any (Ai, Aj) ∈ E, activity Aj can not start until Ai106

has finished:107

Sj − Si ≥ pi ∀(Ai, Aj) ∈ E

A resource cannot perform a skill that it does not master:108

¬mk,l → ¬RAi,k,l ∀Ai ∈ A, ∀Rk ∈ R, ∀Ll ∈ L

Each activity must have the required number of resources covering each of the skills:109 ∑
Rk∈R

RAi,k,l = bi,l ∀Ai ∈ A, ∀Ll ∈ L

A resource can only work at one skill of one activity at a time:110 ∑
Ll∈L

∑
Ai∈A

ite((Si ≤ t < Si + pi); RAi,k,l; 0) ≤ 1 ∀Rk ∈ R, ∀t ∈ H

By ite we denote the if then else construction that returns the second parameter in case111

of the first parameter being true and returns the third parameter otherwise.112

3 MaxSAT and pseudo-Boolean Encodings for MSPSP113

Handling renewable resource limits in the RCPSP is one of the hardest parts of the problem114

and has been widely studied. In [12], several main ways to model this are explained. The115

Task approach checks how much of each resource is used when each activity starts. A similar116

method, called the Event approach, looks at specific time points when activities can begin. It117

schedules these moments, assigns activities to them, and then checks that the resource limits118

are not exceeded at any of them. Another method, the Flow approach, works as a network119

where once an activity ends, the resources it is using are passed on to other activities that120

need them.121
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In this work we focus on time-indexed models, commonly known as the Time approach122

[11], which have shown to provide good performance when solving the different benchmark123

instances available in the literature. This approach consists in discretising the scheduling124

horizon H (the period of time in which the schedule will take place) into unit intervals from125

0 to an upper bound UB, i.e. H = {0, 1, . . . , UB}. The upper bound must be large enough126

so that the optimal solution (if any) will have a makespan not greater than UB. It must127

be ensured that the capacity of a resource is not exceeded at any of the time instants in H.128

A usual way of achiving this purpuse is to introduce auxiliary 0/1 variable per each time129

interval.130

We introduce the following two precomputed sets that we use to define the encodings.131

R(Ai) This is the subset of resources that master at least one of the skills demanded by
activity Ai

L(Ai) This is the subset of skills that activity Ai demand, i.e. the skills Ll such that bi,l > 0.
132

In both (MaxSAT and pseudo-Boolean) encodings, we use the following sets of (pseudo)133

Boolean variables:134

si,t True iff Ai has already started at time t. ∀Ai ∈ A, ∀t ∈ H

xi,t True iff activity Ai is running at time t. ∀Ai ∈ A, and ∀t ∈ H

ari,k True iff activity Ai uses resource Rk. ∀Ai ∈ A, and ∀Rk ∈ R(Ai)
arsi,k,l True iff activity Ai uses resource Rk for skill Ll. ∀Ai ∈ A, ∀Rk ∈ R(Ai), and

∀Ll ∈ L(Ai) such that mk,l, i.e. such that resource Rk masters skill Ll

arti,k,t True iff activity Ai uses resource Rk at time t. ∀Ai ∈ A, ∀Rk ∈ R(Ai), and ∀t ∈ H

135

136

Using these sets and variables, we can now define our SAT-based encodings for both137

MaxSAT and pseudo–Boolean (PB). For each constraint and for the objective function,138

we first present the MaxSAT formulation, followed by its pseudo–Boolean equivalent. For139

the sake of a clearer presentation, we provide some constraints for the MaxSAT and PB140

encodings using higher level syntax than clauses or PB constraints respectively. Later, in141

Subsections 3.1 and 3.2, we explain how these constraints are converted to clauses and PB142

constraints.143

Initial dummy activity144

Constraints (1) and (2) ensure that the initial dummy activity starts at time 0.145

s0,0 (1)146

s0,0 ≥ 1 (2)147

Activity continuity148

Constraints (3) and (4) state that if an activity has started at time ti it has also started at149

time ti+1.150

¬si,t ∨ si,t+1 ∀Ai ∈ A, ∀t ∈ H (3)151

¬si,t + si,t+1 ≥ 1 ∀Ai ∈ A, ∀t ∈ H (4)152

We must handle the case where the temporal indexing goes out of the valid time range,153

i.e., when t /∈ {0, . . . , UB} for variables si,t. Variables with time indices that overflow to154
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the right (i.e., t > UB) are trivially true, while those that overflow to the left as in (5) (i.e.,155

t < 0) are trivially false.156

Precedences157

Constraints (5) and (6) define the precedences between activities.158

¬sj,t ∨ si,t−pi ∀(Ai, Aj) ∈ E, ∀t ∈ H (5)159 ∑
∀t∈H

si,t −
∑

∀t∈H

sj,t ≥ pi ∀(Ai, Aj) ∈ E (6)160

Execution definition161

Constraints (7) and (8) state that an activity Ai is running at time t iff it has already started162

at time t and had not started at t − pi.163

xi,t ↔ si,t ∧ ¬si,t−pi ∀Ai ∈ A, ∀t ∈ H (7)164

xi,t ↔ si,t + ¬si,t−pi ≥ 2 ∀Ai ∈ A, ∀t ∈ H (8)165

Resource assigned to activity166

Constraints (9) and (10) ensure that a resource Rk is assigned to an activity Ai iff Rk supplies167

some skill Ll to Ai.168

ari,k ↔
∨

Ll∈L(Ai)
mk,l

arsi,k,l ∀Ai ∈ A, ∀Rk ∈ R(Ai) (9)169

ari,k ↔
∑

Ll∈L(Ai)
mk,l

arsi,k,l ≥ 1 ∀Ai ∈ A, ∀Rk ∈ R(Ai) (10)170

Resource assigned to activity at specific time171

Constraints (11) and (12) capture that a resource Rk is considered to be working on activity172

Ai at time t precisely when Ai is running at t and Rk has been assigned to it.173

arti,k,t ↔ xi,t ∧ ari,k ∀Ai ∈ A, ∀Rk ∈ R(Ai), ∀t ∈ H (11)174

arti,k,t ↔ xi,t + ari,k ≥ 2 ∀Ai ∈ A, ∀Rk ∈ R(Ai), ∀t ∈ H (12)175

Skill coverage requirement176

Constraints (13) and (14) ensure that each activity has enough resources to cover each of its177

required skills.178

ALK
Rk ∈ R,
s.t. : mk,l

(arsi,k,l, bi,l) Ai ∈ A, ∀Ll ∈ L(Ai) (13)179

∑
Rk ∈ R,
s.t. : mk,l

arsi,k,l ≥ bi,l Ai ∈ A, ∀Ll ∈ L(Ai) (14)180
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By ALK(list, bound) we refer to the at least k constraint requiring at least bound-many181

values of list to be true.182

At most one skill per resource per activity183

Constraints (15) and (16) state that a resource can contribute with at most one skill in one184

activity.185

AMO
Ll ∈ L(Ai),
s.t. : mk,l

arsi,k,l ∀Ai ∈ A, ∀Rk ∈ R(Ai) (15)186

∑
Ll ∈ L(Ai),
s.t. : mk,l

arsi,k,l ≤ 1 ∀Ai ∈ A, ∀Rk ∈ R(Ai) (16)187

By AMO(list) we refer to the at most one constraint requiring that at most one value of188

list is true.189

Resource capacity per time step190

Constraints (17) and (18) ensure that a resource does not contribute to more than one191

activity at a time.192

AMO
Ai ∈ A, s.t. :
t ∈ H,
Rk ∈ R(Ai)

arti,k,t ∀Rk ∈ R, ∀t ∈ H (17)193

∑
Ai ∈ A, s.t. :
t ∈ H,
Rk ∈ R(Ai)

arti,k,t ≤ 1 ∀Rk ∈ R, ∀t ∈ H (18)194

Objective function195

For both the MaxSAT and pseudo–Boolean encodings, the objective function is conceptually196

the same but expressed differently.197

Finding an optimal solution for MaxSAT, consists in finding an assignment that maximizes198

the number satisfied soft clauses (or, equivalently, minimizes the number of the unsatisfied199

soft clauses), while satisfying all hard clauses. In the MaxSAT encoding, all constraints given200

so far will be hard clauses and we introduce soft clauses (sn+1,t, 1) for the dummy activity201

An+1 at each time point t ∈ H, aiming for the solver to satisfy as many of these clauses as202

possible.203

In contrast, the PB encoding aims to minimize the sum of negated pseudo variables204

¬sn+1,t for the dummy activity An+1 at each time point t ∈ H, which is equivalent to205

maximizing the number of time points t for which sn+1,t holds true.206

(sn+1,t, 1) ∀t ∈ H (19)207

minimizing
∑

∀t∈H

¬sn+1,t (20)208
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3.1 Clausal form of the MaxSAT encoding209

Notice also that most of the constraint stated in Section 3 are naturally encoded into clauses,210

but some of them need a reification process, such as constraints (8), (10), and more. Other211

constraints are naturally cardinality constraints, such as (13), that we will encode to SAT212

using the sorting network based encoding from [1]. Constraints (15) and (17) are At Most213

One constraints (AMO), that we will encode into SAT using pairwise mutual exclusions214

between variables, i.e. clauses of the form ¬x ∨ ¬y for any pair of variables in the AMO215

constraint.216

3.2 PB form for the pseudo–Boolean Encoding217

In the MSPSP formulation, many of the PB constraints arise naturally. However, for218

constraints (8), (10), and (12), it becomes necessary to introduce fresh variables. Specifically,219

we require the ability to define a fresh Boolean variable y to represent the reification of a220

constraint like
∑

i aili ≥ A, meaning that y is true iff the constraint holds. This is expressed221

as:222

y ↔
∑

i

aili ≥ A

For a detailed explanation of the reification process in the context of pseudo-Boolean solving,223

we refer the reader to [9].224

4 Further work225

We aim at conduct an empirical evaluation [13] of the proposed encodings with state-of-the-226

art benchmarks of the MSPSP and also using state-of-the-art solvers for MaxSAT and for227

pseudo-Booleans. This evaluation could serve to identify wether current pseudo-Boolean228

solvers not based on encodings to SAT are well-suited for this kind of problems. If the results229

do not provide any clear evidence we aim at generating instances with extreme properties230

such as large durations, larger amount of skill demands, large or small amount of precedences,231

etc. and explore the relative effect is both approaches. We hope that this information allows232

us to identify weaknesses and strengths of both solving technologies.233
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