
Improved Energetic Reasoning Checker for1

Cumulative Constraint with Profile2

Rosaly Zoller Bodo Ngono #3

University of Calabar, Faculty of Physical Sciences, Department of Computer Science, Calabar,4

Nigeria.5

Yves Pascal Ndjopnang Wantiep #6

University of Maroua, Faculty of Science, Department of Mathematics and Computer Science,7

P.O.Box: 814 Maroua, Cameroon.8

Roger Kameugne #9

University of Maroua, Faculty of Science, Department of Mathematics and Computer Science,10

P.O.Box: 814 Maroua, Cameroon.11

Abstract12

This paper applies for the first time the Profile data structure to the energetic reasoning checker13

rule. Tasks are decomposed following an upper (resp. a lower) bound, and the Profile is applied to14

the resulting tasks. The new checker rule, named Horizontally Elastic Energetic Reasoning Checker15

rule subsumes the classic energetic reasoning checker rule and only requires a linear number of16

intervals of interest.17

2012 ACM Subject Classification Computing methodologies → Planning and scheduling; Theory of18

computation → Constraint and logic programming19

Keywords and phrases Energetic Reasoning Checker, Profile Data Structure, Cumulative Scheduling,20

Constraint Programming, Horizontally Elastic Scheduling21

Digital Object Identifier 10.4230/LIPIcs.CP.2025.2322

1 Introduction23

Constraint Programming (CP) is widely used in artificial intelligence and operations research24

to solve combinatorial problems like scheduling, relying on propagators to eliminate incon-25

sistent values in search trees. Applications span economics [3], computer science [4], and pro-26

duction [19]. Techniques such as edge-finding [13], timetabling [9], and not-first/not-last [12]27

support constraint filtering, along with energetic reasoning [15] and overload checks [11].28

Overload checking detects when required energy exceeds availability, prompting back-29

tracking. It began with task intervals [6], evolved into a quadratic algorithm [16], and was30

optimized to quasi-linear time using the Θ-tree [20, 21]. Later, a linear-time version based on31

the union-find TimeLine data structures was introduced in [8], improving on [17]. Profile [10]32

and TimeTable [14] further enhanced the verification [11]. Baptiste [2] proposed a quadratic33

energetic reasoning checker based on relevant intervals. Derrien and Petit [7] reduced their34

count without increasing complexity. Ouellet and Quimper [18] introduced a checker using35

Monge Matrix and range trees in O(n log2(n)). Carlier et al. [5] later improved this to36

O(nα(n) log(n)) (where α(n) is Ackermann’s inverse function, and n the number of tasks37

that share the resource) using critical intervals; To our knowledge, this is the state-of-the-art38

checker based on the rule of energetic reasoning.39

In the following, we apply the Profile data structure to the energetic reasoning checker.40

The tasks are decomposed following an upper bound, allowing the Profile data structure41

to be applied to the decomposed tasks. We get a new checker rule that is more powerful42

than the classic energetic reasoning checker. The remainder of the paper is organized as43

follows. Section 2 is devoted to preliminary concepts, which are very useful. In Section 3,44

© Rosaly Zoller Bodo Ngono, Yves Pascal Ndjopnang Wantiep and Roger Kameugne;
licensed under Creative Commons License CC-BY 4.0

Thirty First Conference on Principles and Practice of Constraint Programming (CP 2025).
Editors: Maria Garcia de la Banda; Article No. 23; pp. 23:1–23:10

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bn.rosalyzoller@gmail.com
https://orcid.org/0000-0001-6037-7932
mailto:ndjowyp@gmail.com
https://orcid.org/0009-0000-6306-2397
mailto:rkameugne@gmail.com
https://orcid.org/0000-0003-1809-9822
https://doi.org/10.4230/LIPIcs.CP.2025.23
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Improved Energetic Reasoning Checker for Cumulative Constraint with Profile

task decomposition is presented, and Section 4 is devoted to the presentation of the new45

energetic reasoning checker rule. In contrast, Section 5 focuses on the supremacy of the new46

rule and Section 6 concludes the paper.47

2 Preliminaries48

2.1 The Cumulative Scheduling Problems (CuSP)49

The Cumulative Scheduling Problem (CuSP) is specified with the given finite set of tasks T50

such that |T | = n (n denotes the number of tasks) to be executed on a resource of capacity51

C ∈ N. We let k = |{hi, i ∈ T}| be the number of distinct capacity demands for the tasks.52

Each task i ∈ T is proceeded without interruption during pi ∈ N time units and requires53

hi ∈ N units of resource between its earliest starting time esti and its latest completion54

time lcti. The earliest (resp. latest) starting (resp. completion) time, the duration, and55

the resource demand of a task are specified. The attributes of a task i ∈ T are denoted56

i = ⟨esti, lcti, pi, hi⟩. A solution of a CuSP is an assignment of starting time si to each task57

i ∈ T such that the resource constraint is satisfied, i.e.,58

esti ≤ si ≤ si + pi ≤ lcti (1)59 ∑
i∈T |si≤t<si+pi

hi ≤ C for all t ∈ [0, max
k∈T

lctk) (2)60

Inequalities in (1) ensure that each task start and end time are feasible, whereas (2) guarantees61

the non-violation of the resource capacity. From the attributes esti, lcti and pi of the task62

i ∈ T , we can deduce its earliest completion time ecti = esti + pi and its latest starting63

time lsti = lcti − pi. The energy of a task i ∈ T denoted ei is computed with ei = hi × pi.64

Let Ω ⊆ T be a non-empty set of tasks. In that case, we define the energy eΩ, the earliest65

starting time estΩ, and the latest completion time lctΩ of Ω as follows:66

eΩ =
∑
k∈Ω

ek, estΩ = min
k∈Ω

estk, lctΩ = max
k∈Ω

lctk (3)67

By convention, for empty sets, we have: e∅ = 0, est∅ =∞ and lct∅ = −∞.68

Throughout this paper, we assume that for any task i ∈ T , esti ≤ lcti and hi ≤ C69

otherwise, the problem has no solution.70

▶ Example 1. Figure 1 illustrates a CuSP instance with three tasks {u, v, w} sharing a71

resource of capacity 2. Each task is defined by attributes ⟨est, lct, p, h⟩, with est and lct72

shown as bracketed points. The processing time, the resource demand, and the energy73

represent, respectively, the length, the height, and the area of each rectangle. Interval [2, 5)74

is the segment on which the energetic reasoning rule and the task decomposition will be75

applied later.76

R. Z. Bodo Ngono, Y. P. Ndjopnang Wantiep and R. Kameugne 23:3

C = 2

0 1 2 3 4 5 6

u

v

w

estu=1

estv=2

estw=3 lctu,w =6

lctv =5
Task w Task uTask v

Figure 1 CuSP instance of 3 tasks on a resource of capacity 2.

2.2 The Profile Data Structure77

Introduced early in [10], the Resource Utilization Profile (or simply Profile data structure)78

is an aggregation of stacked rectangles of different lengths and heights that stores the use79

of resources by tasks over time. Rectangles are expressed with tuples ⟨time, ∆max, ∆req⟩,80

where time is the start time, ∆max is the maximum resource available at starting time, and81

∆req is the maximum resource required by tasks at starting time. The end of a rectangle is82

the starting time of the next one. These tuples are stored in a sorted linked list whose nodes83

are called time points, referring to the starting times of the rectangles. The time points are84

sorted in increasing order of time and are kept in a linked list structure called Profile.85

Algorithm 1 ScheduleTasks(Ω, C) in O(n) time from [10]
Input: All-time point t ∈ P , Ω ⊆ T a set of tasks, C the capacity.
Output: The earliest completion time ectH

Ω of Ω
1: for all t ∈ P do
2: t.∆max ← 0 and t.∆req ← 0
3: for all i ∈ Ω do
4: Increase t.esti.∆max and t.esti.∆req by hi

5: Decrease t.lcti.∆max and t.ecti.∆req by hi

6: ectH ← −∞; overf ← 0; hreq ← 0; S ← 0 t← P.first

7: while t.time < lctΩ do
8: l← t.next.time− t.time

9: S ← S + t.∆max , hmax← min(S, C)
10: hreq ← hreq + t.∆req , hcons← min(hreq + overf, hmax)
11: if overf > 0 ∧ overf < (hcons− hreq) · l then
12: l← 1 + ⌊ overf

hcons−hreq ⌋
13: t.InsertAfter(t.time + l)
14: overf ← overf + (hreq − hcons) · l
15: if hcons > 0 then
16: ectH ← t.next.time

17: t← t.next

18: if overf > 0 then
19: return +∞
20: return ectH

∆max and ∆req contain information relative to the resource consumption for the duration86

(CP 2025)

23:4 Improved Energetic Reasoning Checker for Cumulative Constraint with Profile

of the rectangle and are initialized to zero for every time point. The Profile is initialized for87

every distinct value of est, ect, and lct. The Profile data structure is used in [10] to efficiently88

compute the horizontally elastic earliest completion time of a set of tasks Ω denoted ectH
Ω .89

A set of tasks Ω ⊆ T is said to be horizontally elastic scheduled when each task i ∈ Ω ⊆ T90

starts at its earliest starting time esti and cannot consume more than its required capacity91

at any time during the time interval [esti, lcti). At any time t ∈ [estΩ, lctΩ), the energy that92

cannot be executed due to the limited capacity is accumulated as an overflow and released93

when the resource is no longer saturated. The horizontally elastic earliest completion time of94

Ω ⊆ T denoted ectH
Ω occurs when all tasks are completed. It is computed using the functions95

hreq(t), hmax(t), hcons(t) and overf(t) on the Profile P .96

hmax(t) = min
(∑

i∈Ω|esti≤t<lcti

hi, C

)
is the amount of resource that can be allocated to97

the tasks in Ω at time t;98

hreq(t) =
∑

i∈Ω|esti≤t<ecti

hi is the amount of resource required at time t by the tasks in Ω99

if they were all starting at their earliest starting times;100

overf(t) is the overflow of energy from hreq(t) that cannot be executed at time t due to101

the limited capacity hmax(t), and102

hcons(t) is the amount of resource that is consumed at time t with hcons(t) = min(hreq(t)+103

overf(t− 1), hmax(t)); overf(t) = overf(t− 1) + hreq(t)−hcons(t) and overf(−1) = 0.104

The function ScheduleTasks(Ω, C) of Algorithm 1 from [10] computes the horizontally elastic105

earliest completion time of Ω ⊆ T .106

The loop of Line 1 initializes the attributes t.∆max and t.∆req to zero for any time point107

t. In the loop of Line 3, the increments are updated following the events est, ect and lct of108

tasks in Ω. The While loop of Line 7 updates the values of hmax(t), hreq(t), hcons(t) and109

overf(t) for every time point t starting from the first time point denoted P.first. When the110

remaining overflow is not enough to end at the next time point (Line 11), a new time point111

is inserted using the function InsertAfter (Line 13). If it remains an overflow at the end of112

the profile, the earliest completion time is set to ∞ (see Line 18). The property of this data113

structure is the linearity of the function ScheduleTasks since the Profile contains at most 4n114

time points. In [20], the earliest completion time of a set of tasks Ω ⊆ T is computed with115

the data structure Θ-tree based on the formula116

ectF
Ω =

⌈
max{CestΩ′ + eΩ′ |Ω′ ⊆ Ω}

C

⌉
. (4)117

This value called fully elastic earliest completion time of Ω and denoted ectF
Ω is obtained118

when all tasks of Ω are fully elastic scheduled. A set of tasks Ω ⊆ T is said to be fully elastic119

scheduled [1] if each task i ∈ Ω starts at estΩ and occupies a total area of ei = hi× pi. When120

the maximum height is reached at time t, time t + 1 starts being occupied. It has been shown121

in [10] that the horizontally elastic relaxation is stronger than the fully elastic one. i.e, for122

all set of tasks Ω ⊆ T123

ectF
Ω ≤ ectH

Ω ≤ ectΩ. (5)124

▶ Example 2. The profile of the CuSP instance of Figure 1 is depicted in Figure 2. The125

functions hmax, hcons, hreq and overf are illustrated. One unit of overflow is stored at a126

time point 3. It is scheduled at a time 5. The horizontally elastic earliest completion time of127

the set of tasks {u, v, w} is 6. On the other hand, the fully elastic earliest completion time of128

{u, v, w} obtained with formula (4) is 6.129

R. Z. Bodo Ngono, Y. P. Ndjopnang Wantiep and R. Kameugne 23:5

0 1 2 3 4 5 6

overf

hcons hreq hmax

Figure 2 The profile of the tasks {u, v, w}.

2.3 Energetic Reasoning Checker130

For any task i ∈ T , energetic reasoning (ER) compares the energy available in a time interval131

[a, b) with the minimum energy required by tasks during that interval. For each task, ER132

evaluates its minimum contribution by considering three configurations—left-shifted (starting133

earliest at esti), right-shifted (ending later at lcti), or centered (occupies the entire interval134

[a, b))—and selects the one with the least overlap, thus minimizing energy consumption in the135

interval. Of these three configurations, the one leading to minimum resource consumption is136

the one whose intersection with the interval [a, b) is minimal.137

The Left-Shifted energy of task i in interval [a, b) is the integer denoted LS(i, a, b) and138

defined by139

LS(i, a, b) = hi ×max(0, min(ecti − a, pi, b− a)) (6)140

The Right-Shifted energy of task i in interval [a, b) is the integer denoted RS(i, a, b) and141

defined by142

RS(i, a, b) = hi ×max(0, min(b− lsti, pi, b− a)) (7)143

The minimum intersection energy of task i in the interval [a, b) is the integer denoted144

MI(I, a, b) and defined by145

MI(i, a, b) = min(LS(i, a, b), RS(i, a, b)) (8)146

Let Ω be a set of tasks. The minimum intersection energy of Ω in the interval [a, b) is denoted147

MI(Ω, a, b) and defined by148

MI(Ω, a, b) =
∑
i∈Ω

MI(i, a, b) (9)149

For a cumulative resource of capacity C, the margin (or slack) function of Ω over [a, b) noted150

SL(Ω, a, b) is the integer defined by151

SL(Ω, a, b) = C × (b− a)−MI(Ω, a, b) (10)152

The energetic reasoning checker tests for every interval [a, b), if the slack of an instance T of153

the cumulative constraint over [a, b) is non-negative, i.e., SL(T, a, b) ≥ 0. When the test fails,154

an inconsistency is detected as specified in the following rule155

∃a, b ∈ N with a < b, SL(T, a, b) < 0⇒ fail (ERC)156

(CP 2025)

23:6 Improved Energetic Reasoning Checker for Cumulative Constraint with Profile

▶ Example 3. Back to the CuSP instance of Figure 1 where three tasks share a resource of ca-157

pacity 2, we consider the interval [2, 5). We have MI({u, v, w}, 2, 5) = MI(u, 2, 5)+MI(v, 2, 5)+158

MI(w, 2, 5) = 3 + 2 + 2 = 7 and SL({u, v, w}, 2, 5) = 2× (5−2)−MI({u, v, w}, 2, 5) = 6−7 =159

−1 < 0. Therefore, a failure is detected, and the CuSP is infeasible (this means that the160

amount of resources available in the interval [2, 5) is insufficient to schedule a minimum161

consumption for all activities).162

3 Tasks Decomposition163

Let b be an integer and i ∈ T be a task. There is a whole number a(i, b) ∈ [esti, lsti]164

whose left-shift energy of i is equal to its right-shift energy in the interval [a(i, b), b] i.e.,165

LS(i, a(i, b), b) = RS(i, a(i, b), b).166

▶ Lemma 4. Given an integer b and a task i ∈ T , the integer a(i, b) is defined as167

a(i, b) =


esti if lcti ≤ b

esti + lcti − b if lcti > b ∧ lsti < b ∧ ecti < b

lsti if lcti > b ∧ lsti < b ∧ ecti ≥ b

(11)168

Proof. The relation is obtained when replacing a(i, b) in LS(i, a(i, b), b). ◀169

Let b be an integer and i be a task. The minimum intersection span time of task i in the170

interval (∞, b) denoted span(i, b) is defined by171

span(i, b) =


pi if lcti ≤ b

b− lsti if lcti > b ∧ lsti < b

0 otherwise
(12)172

We consider the task dec(i, b) derives from task i and integer b with the following attrib-173

utes: estdec(i,b) = a(i, b), lctdec(i,b) =


lcti if lcti ≤ b

b if lcti > b ∧ lsti < b

−1 otherwise
, pdec(i,b) = span(i, b), and174

hdec(i,b) = hi. The task dec(i, b) is the decomposition of task i following the upper bound175

b. For all integer a with a < b such that MI(i, a, b) > 0. When task dec(i, b) is scheduled176

horizontally and elastically, its span time in [a, b) corresponds to the minimum intersection177

span time of task i in [a, b). This result is formally proved in Lemma 5.178

▶ Lemma 5. Let b be an integer and i ∈ T be a task. For all integer a with a < b with179

MI(i, a, b) > 0, the task dec(i, b) decomposition of task i following the upper bound b span time180

in [a, b), when it is horizontally elastically scheduled corresponds to the minimum intersection181

span time of task i in [a, b).182

Proof. (See the appendix section A) ◀183

We denote by Dec(T, b) the set of decomposed tasks following the upper bound b i.e.,184

Dec(T, b) = {dec(i, b) | i ∈ T}. Symmetrically, given an integer a and a task i. It is185

possible to decompose task i following the lower bound a. The task dec(i, a) deduced from186

task i and the integer a denotes the decomposition of task i following the lower bound187

a and Dec(T, a) denotes the set of decomposed tasks following the lower bound a i.e.,188

Dec(T, a) = {dec(i, a) | i ∈ T}.189

R. Z. Bodo Ngono, Y. P. Ndjopnang Wantiep and R. Kameugne 23:7

▶ Example 6. For the upper bound b = 5, we decompose the tasks of the CuSP instance of190

Figure 1. We denote by {u′, v′, w′} the decomposed tasks where u′ = dec(u, 5), v′ = dec(v, 5),191

and w′ = dec(w, 5) respectively. After application of the decomposition rule, we have192

u′ = ⟨2, 5, 3, 1⟩, v′ = ⟨2, 5, 2, 1⟩ and w′ = ⟨3, 5, 2, 1⟩. The decomposed tasks are depicted in193

Figure 3.194

a b

0 1 2 3 4 5 6

v′

u′

w′

estu′,v′=2

estw′ =3 lctu′,v′,w′=5

Task u′Task v′Task w′

Figure 3 The CuSP instance of the decomposed tasks of Figure 1 following the upper bound 6.

4 Horizontally Elastic Energetic Reasoning Checker Rule195

The new checker compares the horizontally elastic earliest completion (resp. latest starting)196

time of the set of decomposed tasks following an upper (resp. lower) bound to the bound. It197

is formally stated as follows:198

∃b ∈ {ecti, lcti | i ∈ T}, ectH
Dec(T,b) > b⇒ fail (HE-ERCb)199

∃a ∈ {esti, lsti | i ∈ T}, lstH
Dec(T,a) < a⇒ fail (HE-ERCa)200

In the rest of the paper, we only deal with the rule (HE-ERCb) since the rule (HE-ERCa)201

can be made symmetrically. Indeed, to perform the rule (HE-ERCa), a symmetric problem202

is obtained by replacing any task i into a task i1 such that: esti1 = Cmax − lcti, lcti1 =203

Cmax − esti, pi1 = pi, and hi1 = hi where Cmax = max
i∈T

lcti. The decomposition and the204

earliest completion time of the symmetric problem correspond to the decomposition and the205

latest starting time of the original problem. The correctness of the rule uses the following206

lemma.207

▶ Lemma 7. Let b be an integer and a∗ be the smallest integer such that the rule (ERC)208

holds with the interval [a∗, b). For all i ∈ T such that MI(i, a∗, b) > 0, the energy of the209

horizontally elastic scheduling of dec(i, b) in [a∗, b) is equal to MI(i, a∗, b).210

Proof. (See the appendix section A) ◀211

▶ Theorem 8. If the rule (ERC) holds with the interval [a, b], then the rule (HE-ERCb) or212

(HE-ERCa) holds with b or a respectively.213

Proof. (See the appendix section A) ◀214

The number of useful intervals is the main drawback of the energetic reasoning approach.215

The new formulation reduces this number from a factor of O(n). This is the first formulation216

with a linear number of relevant intervals.217

(CP 2025)

23:8 Improved Energetic Reasoning Checker for Cumulative Constraint with Profile

▶ Example 9. The profile of the decomposed tasks of Figure 3 is depicted in Figure 4. An218

overflow of one unit of energy is recorded at time 3, and from the condition of Line 18 of219

Algorithm 1, the horizontally elastic earliest completion time of {u′, v′, w′} is ∞. Therefore,220

the failure is detected.221

0 1 2 3 4 5

overf

hcons hreq hmax

Figure 4 The profile of the decomposed tasks of Figure 3.

The profile data structure also increases the filtering power of the new rule, which can222

detect more superset inconsistencies than the classic energetic reasoning checker.223

5 Dominance property224

▶ Theorem 10. The combination of rules (HE-ERCa) and (HE-ERCb) detects more supersets225

of inconsistencies than the rule (ERC).226

Proof. Consider the CuSP instance of Figure 5a where four tasks share a resource of capacity227

3. The tasks x and v are fixed while tasks u and w remain free. There is no way to insert tasks228

u and w before time 12 without preemption. Therefore, the problem is inconsistent. The229

classic energetic reasoning checker does not detect this inconsistency. After the decomposition230

of tasks following the upper bound b = 9, the decomposed tasks are dec(x, 9) = ⟨6, 9, 3, 1⟩,231

dec(u, 9) = ⟨8, 9, 1, 1⟩, and dec(v, 9) = ⟨4, 9, 5, 2⟩.232

0 2 4 6 8 10 12

u

v

w

x

estu=5

estv=4

estw=9

estx=6

lctu,w=12

lctv=9

lctx=11

(a) Four tasks on a resource of capacity 3

0 2 4 6 8 10

overf

hcons hreq hmax

(b) The profile of the decomposed tasks following
the upper bound 9

Figure 5 (5a) CuSP instance of 4 tasks on a resource of capacity 3 and (5b) the profile of the
decomposed tasks following the upper bound 9.

The horizontally elastic earliest completion time of Dec(T, 9) is ∞, and rule (HE-ERCb)233

detects the inconsistency. On the Profile of decomposed tasks, only one unit of overflow is234

recorded at time 8. This overflow is not released at the end. ◀235

The new rule subsumes the classic energetic reasoning checker and only requires a linear236

number of relevant intervals.237

R. Z. Bodo Ngono, Y. P. Ndjopnang Wantiep and R. Kameugne 23:9

6 Conclusion238

In this paper, we have applied the Profile data structure to the energetic reasoning checker.239

To do so, tasks are decomposed following an upper (resp. a lower) bound, and the profile is240

applied to decomposed tasks. The new rule subsumes the classic energetic reasoning checker241

and only considers a linear number of useful intervals. For future work, we plan to propose242

an algorithm with low time complexity for this new rule.243

References244

1 P. Baptiste, C.L. Pape, and W. Nuijten. Constraint-Based Scheduling: Applying Constraint245

Programming to Scheduling Problems. International Series in Operations Research & Manage-246

ment Science. Springer US, 2012. URL: https://books.google.cm/books?id=qUzhBwAAQBAJ.247

2 Philippe Baptiste, Claude Le Pape, and Wim Nuijten. Satisfiability tests and time-bound248

adjustmentsfor cumulative scheduling problems. Ann. Oper. Res., 92:305–333, 1999.249

3 Rajkumar Buyya, Manzur Murshed, David Abramson, and Srikumar Venugopal. Scheduling250

parameter sweep applications on global grids: a deadline and budget constrained cost–time251

optimization algorithm. Software: Practice and Experience, 35(5):491–512, 2005.252

4 Jacques Carlier and Christian Prins. Optimisation des plans de trame dans le système253

amrt/cnc d’eutelsat. Annales Des Télécommunications, 43:506–521, 1988. URL: https:254

//api.semanticscholar.org/CorpusID:107386270.255

5 Jacques Carlier, Abderrahim Sahli, Antoine Jouglet, and Eric Pinson. A faster checker of the256

energetic reasoning for the cumulative scheduling problem. Int. J. Prod. Res., 60(11):3419–3434,257

2022.258

6 Yves Caseau and François Laburthe. Improved CLP scheduling with task intervals. In ICLP,259

pages 369–383. MIT Press, 1994.260

7 Alban Derrien and Thierry Petit. A new characterization of relevant intervals for energetic261

reasoning. In CP, volume 8656 of Lecture Notes in Computer Science, pages 289–297. Springer,262

2014.263

8 Hamed Fahimi, Yanick Ouellet, and Claude-Guy Quimper. Linear-time filtering algorithms264

for the disjunctive constraint and a quadratic filtering algorithm for the cumulative not-first265

not-last. Constraints An Int. J., 23(3):272–293, 2018.266

9 Steven Gay, Renaud Hartert, and Pierre Schaus. Simple and scalable time-table filtering for267

the cumulative constraint. In CP’15: Proceedings of the 15th international conference on268

Principles and practice of constraint programming, volume 9255 of Lecture Notes in Computer269

Science, pages 149–157. Springer, 2015.270

10 Vincent Gingras and Claude-Guy Quimper. Generalizing the edge-finder rule for the cumulative271

constraint. In IJCAI, pages 3103–3109. IJCAI/AAAI Press, 2016.272

11 Roger Kameugne, Sévérine Betmbe Fetgo, Thierry Noulamo, and Clémentin Tayou Djamégni.273

Improved timetable edge finder rule for cumulative constraint with profile. Comput. Oper.274

Res., 172:106795, 2024.275

12 Roger Kameugne and Laure Pauline Fotso. A cumulative not-first/not-last filtering algorithm276

in o(n2log(n)). Indian Journal of Pure and Applied Mathematics, 44:95–115, 2013.277

13 Roger Kameugne, Laure Pauline Fotso, Joseph D. Scott, and Youcheu Ngo-Kateu. A quadratic278

edge-finding filtering algorithm for cumulative resource constraints. Constraints An Int. J.,279

19(3):243–269, 2014.280

14 Abdelkader Lahrichi. Ordonnancements: La notion de " parties obligatoires" et son application281

aux problèmes cumulatifs. RAIRO - Operations Research - Recherche Opérationnelle, 16(3):241–282

262, 1982.283

15 Pierre Lopez. Approche énergétique pour l’ordonnancement de tâches sous contraintes de284

temps et de ressources. (Energy-based approach for task scheduling under time and resource285

constraints). PhD thesis, Paul Sabatier University, Toulouse, France, 1991.286

(CP 2025)

https://books.google.cm/books?id=qUzhBwAAQBAJ
https://api.semanticscholar.org/CorpusID:107386270
https://api.semanticscholar.org/CorpusID:107386270
https://api.semanticscholar.org/CorpusID:107386270

23:10 Improved Energetic Reasoning Checker for Cumulative Constraint with Profile

16 Luc Mercier and Pascal Van Hentenryck. Edge finding for cumulative scheduling. INFORMS287

J. Comput., 20(1):143–153, 2008.288

17 W.P.M. Nuijten. Time and resource constrained scheduling : a constraint satisfaction approach.289

Phd thesis 1 (research tu/e / graduation tu/e), Mathematics and Computer Science, 1994.290

doi:10.6100/IR431902.291

18 Yanick Ouellet and Claude-Guy Quimper. A o(n \log ˆ2 n) checker and o(nˆ2 \log n) filtering292

algorithm for the energetic reasoning. In CPAIOR, volume 10848 of Lecture Notes in Computer293

Science, pages 477–494. Springer, 2018.294

19 Charles Thomas and Pierre Schaus. A constraint programming approach for aircraft disassembly295

scheduling. In CPAIOR (2), volume 14743 of Lecture Notes in Computer Science, pages 211–220.296

Springer, 2024.297

20 Petr Vilím. Max energy filtering algorithm for discrete cumulative resources. In CPAIOR,298

volume 5547 of Lecture Notes in Computer Science, pages 294–308. Springer, 2009a.299

21 Armin Wolf and Gunnar Schrader. O(n logn) overload checking for the cumulative constraint300

and its application. In INAP, volume 4369 of Lecture Notes in Computer Science, pages301

88–101. Springer, 2005.302

A Proofs of lemmas and theorems303

Proof. of lemma 5304

The task dec(i, b) is horizontally elastic scheduled if it starts at its earliest starting time305

a(i, b), consumes between 0 and hi units of energy at any time. When the task is alone, it306

consumes exactly hi units of energy at any time during its execution. Let a be an integer307

with a < b and MI(i, a, b) > 0. The rest of the proof will distinguish the case a ≤ a(i, b) from308

the case a > a(i, b).309

if a ≤ a(i, b) then the span of task dec(i, b) in [a, b] corresponds to span(i, b) when it310

is horizontally ealstic scheduled. From the definition of a(i, b), we have LS(i, a, b) ≥311

RS(i, a, b) = span(i, b)× hi and the result follows.312

if a > a(i, b) then span of task dec(i, b) is ectdec(i,b)−a where ectdec(i,b) =
{

ecti if ecti < b

b if ecti ≥ b
.313

Therefore, (ectdec(i,b) − a)× hi = LS(i, a, b) ≤ RS(i, a, b) and the result follows.314

◀315

Proof. of lemma 7 If the energy of the horizontally elastic scheduling of dec(i, b) in [a∗, b) is316

different from MI(i, a∗, b), then there exists an integer a < a∗ such that less than hi units of317

task i is used at time a. The last peak starts at a and the remaining energy not consumed at318

time a is postponed until the future time point when the resource will be available. Therefore,319

rule (ERC) holds with the interval [a, b] which contradicts the minimality of a∗. ◀320

Proof. of Theorem 8321

Assume that the rule (ERC) holds with the interval [a, b]. According to the charac-322

terization of relevant intervals for energetic reasoning of [7], if a = esti + lcti − b (resp.323

b = esti + lcti − a) with i ∈ T , then b ∈ {ectk, lctk | k ∈ T} (resp. a ∈ {estk, lstk | k ∈ T}).324

Therefore, if b ∈ {ectk, lctk | k ∈ T}, then the rule (HE-ERCb) is considered; otherwise, the325

rule (HE-ERCa) is used. We assume that b ∈ {ectk, lctk | k ∈ T} and no detection is made326

by the rule (HE-ERCa). The last peak of the profile of Dec(T, b) contains the large interval327

[a∗, b) on which the rule (ERC) holds. According to Lemma 7, the horizontally elastic energy328

of the interval [a∗, b] is its minimal intersection energy. Since horizontally elastic scheduling329

is more constrained than fully elastic scheduling (see formula (5)), we can deduce that rule330

(HE-ERCb) holds. ◀331

https://doi.org/10.6100/IR431902

	1 Introduction
	2 Preliminaries
	2.1 The Cumulative Scheduling Problems (CuSP)
	2.2 The Profile Data Structure
	2.3 Energetic Reasoning Checker

	3 Tasks Decomposition
	4 Horizontally Elastic Energetic Reasoning Checker Rule
	5 Dominance property
	6 Conclusion
	A Proofs of lemmas and theorems

