
Dependency-Curated Large Neighbourhood Search1

Frej Knutar Lewander1 #2

Uppsala University, Department of Information Technology, Uppsala, Sweden3

Pierre Flener #4

Uppsala University, Department of Information Technology, Uppsala, Sweden5

Justin Pearson #6

Uppsala University, Department of Information Technology, Uppsala, Sweden7

Abstract8

In large neighbourhood search (LNS), an incumbent initial solution is incrementally improved by9

selecting a subset of the variables, called the freeze set, and fixing them to their values in the10

incumbent solution, while a value for each remaining variable is found and assigned via solving11

(such as constraint programming-style propagation and search). Much research has been performed12

on finding generic and problem-specific LNS selection heuristics that select freeze sets that lead to13

high-quality solutions. In constraint-based local search (CBLS), the relations between the variables14

via the constraints are fundamental and well-studied, as they capture dependencies of the variables.15

In this paper, we apply these ideas from CBLS to the LNS context, presenting the novel dependency16

curation scheme, which exploits them to find a low-cardinality set of variables that the freeze set of17

any selection heuristic should be a subset of. The scheme often improves the overall performance of18

generic selection heuristics. Even when the scheme is used with a naïve generic selection heuristic19

that selects random freeze sets, the performance is competitive with more elaborate generic selection20

heuristics.21

2012 ACM Subject Classification Computing methodologies → Heuristic function construction22

Keywords and phrases Combinatorial Optimisation, Large Neighbourhood Search (LNS), Constraint-23

Based Local Search (CBLS)24

Category Extended Abstract25

Related Version Full Version: 10.4230/LIPIcs.CP.2025.1626

Supplementary Material Software (Solver): https://github.com/astra-uu-se/gecode-lns27

Software (Results, Experiments, and Scheme Generator): https://github.com/astra-uu-se/28

gecode-lns-experiments29

Funding Supported by grant 2018-04813 of the Swedish Research Council (VR).30

Acknowledgements We thank Mikael Zayenz Lagerkvist and Dexter Leander for their help with the31

Gecode implementation.32

1 Introduction33

Large neighbourhood search (LNS) [12, 9] is a method that combines systematic search with34

local search to improve the scalability of the former on constrained optimisation problems35

using heuristics of the latter. LNS starts from an incumbent solution that is iteratively36

improved by fixing a subset of the variables to their values in the incumbent solution and37

a value for each remaining variable is found and assigned via solving (such as constraint38

programming-style propagation and search). This method has been very successful on a wide39

variety of problems, such as vehicle routing [12, 1], bin packing [16], and scheduling [2, 13].40

1 Corresponding author

mailto:frej.knutar.lewander@it.uu.se
https://orcid.org/0009-0009-6215-4666
mailto:pierre.flener@it.uu.se
https://orcid.org/0000-0001-8730-4098
mailto:justin.pearson@it.uu.se
https://orcid.org/0000-0002-0084-8891
https://doi.org/10.4230/LIPIcs.CP.2025.16
https://github.com/astra-uu-se/gecode-lns
https://github.com/astra-uu-se/gecode-lns-experiments
https://github.com/astra-uu-se/gecode-lns-experiments
https://github.com/astra-uu-se/gecode-lns-experiments


2 Dependency-Curated Large Neighbourhood Search

Traditionally, a modeller has to construct a problem-specific selection heuristic for the41

determination of the subset of variables to fix [2, 11]. However, there are now many variants42

of LNS that automatically determine that subset with good search performance, such as (but43

not limited to) (reverse) propagation guided LNS [8], cost impact guided LNS [4], explanation-44

based LNS [10], self-adaptive LNS [14], and variable-relationship guided LNS [13].45

In most combinatorial optimisation solvers, such as for mixed integer linear programming,46

constraint programming (CP), Boolean satisfiability (SAT), and constraint-based local search47

(CBLS), when some variable x becomes fixed, the values of some other variables can be found48

and assigned via search-free unique solving (via inference such as CP propagation, SAT unit49

propagation, and CBLS invariant propagation). Therefore, the relations between x and the50

assigned variables are functional dependencies. In CBLS, these functional dependencies are51

fundamental and heavily studied [6, 7, 15, 3]. We have not found generic LNS selection52

heuristics or CP branching heuristics that automatically exploit these functional dependencies53

that are exploited in CBLS. However, they are often exploited manually by the modeller54

when for example creating a problem-specific CP branching heuristic that guides search.55

Our contributions are:56

applying from CBLS to a CP context (and hence to CP-based LNS) the idea of a directed57

possibly cyclic graph that is induced by the functional dependencies between variables58

via the constraints of the model;59

designing a scheme that exploits the induced directed graph to remove variables from the60

LNS space that are functionally defined by others;61

describing how our scheme can be automated;62

showing that state-of-the-art generic LNS selection heuristics are easily extended to make63

use of our scheme;64

showing that our scheme often improves the overall performance when used with state-of-65

the-art generic selection heuristics; and66

showing that our scheme, when used with a naïve generic LNS selection heuristic that67

fixes a set of variables selected at random inside each LNS iteration, is competitive with68

more elaborate state-of-the-art generic LNS selection heuristics, even when they also use69

our scheme.70

We first present how to apply the idea of a dependecy graph to a CP context (and hence71

to CP-based LNS) in Section 2. We give the background to our scheme in Section 3. Finally,72

we conclude in Section 4.73

2 The Dependency Graph of a CP Model74

In a CP model, some constraints are dependency constraints, where a dependency constraint c75

on the variables X = I ∪O determines the values of the variables in O when the variables in I76

become fixed. We can view c as a function that determines the values of output variables O77

when the input variables I become fixed. We say that c is a dependency constraint and that I78

functionally defines O via c, denoted by I c=⇒ O, or simply that I functionally defines O.79

For example, consider the integer variables y and i, the array P of integers, and the80

constraint Element(P, i, y), which constrains y to be equal to the integer in P at index i.81

When i becomes fixed to some value v, the value of y becomes assigned to the integer in P82

at index v. The constraint is a dependency constraint, via which i functionally defines y83

For a CP model, the dependency constraints and the variables induce a directed graph,84

called the dependency graph [5], where for each set I of variables that functionally defines a85

set O of variables via some dependency constraint c, there is a vertex d, an arc x → d for86



F. Knutar Lewander et al. 3

each vertex x ∈ I, and an arc d → y for each vertex y ∈ O. Note that the dependency graph87

is possibly cyclic. Also note that all the variables and all the dependency constraints are in88

the dependency graph, while the other (non-dependency) constraints are not.89

For any acyclic dependency graph, the source variables transitively functionally define all90

remaining variables. Therefore, for any acyclic dependency graph, the minimum-cardinality91

set of such variables is the set of source variables. However, this does not always hold for a92

cyclic dependency graph. In Section 3, we present a greedy scheme that, given a CP model93

(inducing a cyclic or acyclic dependency graph), finds a low-cardinality set of such variables,94

which can be exploited to guide LNS.95

3 Dependency Curation for LNS96

Typically, in generic selection heuristics, the freeze set is gradually updated inside each97

LNS iteration to include variables such that many other variables are assigned values via98

CP-style propagation [8, 13]. For these selection heuristics, such variables are found either99

experimentally or heuristically during search.100

We call any set of variables that transitively functionally define all remaining variables a101

set of search variables, as only their values must be found via search.102

Consider a CP model with the set V of variables. Finding a set S ⊆ V of search variables103

is trivial as V itself is a set of search variables, though of maximum cardinality. Our idea is104

that the smaller the set S is, the more CP-style propagation will occur, as the value of each105

variable in V \ S is found and assigned via only propagation (as S transitively functionally106

defines V \ S). Additionally, for any (generic or problem-specific) selection heuristic, if the107

freeze set is forced to become a subset of S, then the LNS space is reduced, no data has to108

be stored, and no operations have to be performed on any variable in V \ S by the selection109

heuristic, potentially improving its memory footprint and running time.110

Note that if the dependency graph is acyclic, then the minimum-cardinality set of search111

variables is the set of source variables. Otherwise, the dependency graph contains at least one112

strongly connected component (SCC) with two or more vertices, and finding a low-cardinality113

set of search variables is a subtle issue, as discussed next.114

As the variables and dependency constraints are known up-front, a low-cardinality set115

of search variables can be constructed before search starts. A (generic or problem-specific)116

selection heuristic can use the constructed set of search variables throughout search by forcing117

the freeze set to be a subset of that set.118

Our scheme, called the dependency curation scheme (DCS), finds a low-cardinality set of119

search variables given the variables, vertices, and arcs of a dependency graph.120

4 Conclusion and Future Work121

We have presented our dependency curation scheme (DCS), which can be used with any122

(generic or problem-specific) LNS selection heuristic. We have compared the performance of123

a naïve generic randomised selection heuristic and more elaborate state-of-the-art generic124

selection heuristics from the literature both with and without DCS, revealing overall improved125

performance when using DCS. Our experiments show that the performance of using DCS with126

the naïve randomised selection heuristic is competitive with the more elaborate state-of-the-art127

generic selection heuristics, even when they use DCS.128



4 Dependency-Curated Large Neighbourhood Search

References129

1 Russell Bent and Pascal Van Hentenryck. A two-stage hybrid algorithm for pickup and130

delivery vehicle routing problems with time windows. Computers and Operations Research,131

33(1):875–893, January 2006. doi:10.1016/j.cor.2004.08.001.132

2 Daniel Godard, Philippe Laborie, and Wim Nuijten. Randomized large neighborhood search133

for cumulative scheduling. In Susanne Biundo, Karen L. Myers, and Kanna Rajan, editors,134

ICAPS 2005, pages 81–89. AAAI Press, 2005.135

3 Frej Knutar Lewander, Pierre Flener, and Justin Pearson. Invariant graph propagation in136

constraint-based local search. Journal of Artificial Intelligence Research, 2025. Forthcoming.137

4 Michele Lombardi and Pierre Schaus. Cost impact guided LNS. In Helmut Simonis, editor,138

CP-AI-OR 2014, volume 8451 of LNCS, pages 293–300. Springer, 2014. doi:10.1007/139

978-3-319-07046-9_21.140

5 Toni Mancini and Marco Cadoli. Exploiting functional dependencies in declarative problem141

specifications. Artificial Intelligence, 171(16–17):985–1010, November 2007. doi:10.1016/j.142

artint.2007.04.017.143

6 Laurent Michel and Pascal Van Hentenryck. Localizer: A modeling language for local search.144

In Gert Smolka, editor, CP 1997, volume 1330 of LNCS, pages 237–251. Springer, 1997.145

doi:10.1007/BFb0017443.146

7 Laurent Michel and Pascal Van Hentenryck. Localizer. Constraints, 5(1–2):43–84, 2000.147

doi:10.1023/A:1009818401322.148

8 Laurent Perron, Paul Shaw, and Vincent Furnon. Propagation guided large neighborhood149

search. In Mark Wallace, editor, CP 2004, volume 3258 of LNCS, pages 468–481. Springer,150

2004. doi:10.1007/978-3-540-30201-8_35.151

9 David Pisinger and Stefan Ropke. Large neighborhood search. In Michel Gendreau and152

Jean-Yves Potvin, editors, Handbook of Metaheuristics, volume 272 of ORMS, chapter 4, pages153

99–127. Springer, 2019. doi:10.1007/978-3-319-91086-4_4.154

10 Charles Prud’homme, Xavier Lorca, and Narendra Jussien. Explanation-based large155

neighborhood search. Constraints, 19(4):339–379, October 2014. doi:10.1007/156

s10601-014-9166-6.157

11 Pierre Schaus, Pascal Van Hentenryck, Jean-Noël Monette, Carleton Coffrin, Laurent Michel,158

and Yves Deville. Solving steel mill slab problems with constraint-based techniques: CP, LNS,159

and CBLS. Constraints, 16(2):125–147, April 2011. doi:10.1007/s10601-010-9100-5.160

12 Paul Shaw. Using constraint programming and local search methods to solve vehicle routing161

problems. In Michael Maher and Jean-François Puget, editors, CP 1998, volume 1520 of162

LNCS, pages 417–431. Springer, 1998. doi:10.1007/3-540-49481-2_30.163

13 Filipe Souza, Diarmuid Grimes, and Barry O’Sullivan. An investigation of generic approaches164

to large neighbourhood search. In Paul Shaw, editor, CP 2024, volume 307 of LIPIcs, pages165

39:1–39:10. Dagstuhl Publishing, 2024. doi:10.4230/LIPIcs.CP.2024.39.166

14 Charles Thomas and Pierre Schaus. Revisiting the self-adaptive large neighborhood search.167

In Willem-Jan van Hoeve, editor, CP-AI-OR 2018, volume 10848 of LNCS, pages 557–566.168

Springer, 2018. doi:10.1007/978-3-319-93031-2_40.169

15 Pascal Van Hentenryck and Laurent Michel. Constraint-Based Local Search. The MIT Press,170

2005.171

16 Gerhard Wäscher and Thomas Gau. Heuristics for the integer one-dimensional cutting172

stock problem: A computational study. OR Spektrum, 18:131–144, 1996. doi:10.1007/173

BF01539705.174

https://doi.org/10.1016/j.cor.2004.08.001
https://doi.org/10.1007/978-3-319-07046-9_21
https://doi.org/10.1007/978-3-319-07046-9_21
https://doi.org/10.1007/978-3-319-07046-9_21
https://doi.org/10.1016/j.artint.2007.04.017
https://doi.org/10.1016/j.artint.2007.04.017
https://doi.org/10.1016/j.artint.2007.04.017
https://doi.org/10.1007/BFb0017443
https://doi.org/10.1023/A:1009818401322
https://doi.org/10.1007/978-3-540-30201-8_35
https://doi.org/10.1007/978-3-319-91086-4_4
https://doi.org/10.1007/s10601-014-9166-6
https://doi.org/10.1007/s10601-014-9166-6
https://doi.org/10.1007/s10601-014-9166-6
https://doi.org/10.1007/s10601-010-9100-5
https://doi.org/10.1007/3-540-49481-2_30
https://doi.org/10.4230/LIPIcs.CP.2024.39
https://doi.org/10.1007/978-3-319-93031-2_40
https://doi.org/10.1007/BF01539705
https://doi.org/10.1007/BF01539705
https://doi.org/10.1007/BF01539705

	1 Introduction
	2 The Dependency Graph of a CP Model
	3 Dependency Curation for LNS
	4 Conclusion and Future Work

