
Do LLMs Understand Constraint Programming?
Zero-Shot Constraint Programming Model
Generation Using LLMs
Yuliang Song #

Department of Mechanical and Industrial Engineering, University of Toronto, Canada

Eldan Cohen #

Department of Mechanical and Industrial Engineering, University of Toronto, Canada

Abstract
Large language models (LLMs) have gained significant attention for their ability to solve complex
tasks such as coding and reasoning. In this work, we aim to evaluate their ability to generate
constraint programming (CP) models in a zero-shot setting, emphasizing model correctness and
conformity to user-specified output formats. We propose a novel, iterative approach for zero-shot
CP modeling that translates natural language problem descriptions into valid CP models and
supports solution extraction to predefined output formats to facilitate effective adoption by domain
experts and enable automated performance evaluation. To evaluate our approach, we introduce
the Constraint Programming Evaluation (CPEVAL) benchmark, derived from a diverse set of CP
problems in CSPLib, coupled with an automated evaluation suite for large-scale assessment. We
augment CPEVAL with paraphrased variants to assess robustness across linguistic variation and
mitigate bias in the evaluation due to data memorization. Our extensive experiments across eight
prominent LLMs and two CP modeling languages, MiniZinc and PyCSP3, show that our proposed
iterative Two-Step method significantly enhances model correctness and conformity to user-specified
output formats. Furthermore, we observe that larger LLMs demonstrate superior performance, with
DeepSeek-R1 emerging as the top performer across both CP languages. We also observe that LLMs
generally perform better in MiniZinc than in PyCSP3.
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1 Introduction

Constraint Programming (CP) is a powerful paradigm for solving complex combinatorial
problems across diverse domains [16]. However, the specialized expertise required to trans-
late domain requirements into formal CP models remains a barrier to broader adoption,
underscoring the demand for automated tools to simplify CP model generation from natural
language descriptions [14, 18]. Large language models (LLMs) have gained growing atten-
tion for their capabilities in problem solving and reasoning [20], making them promising
tools for CP modeling. Previous work has explored their ability to generate CP models
from natural language descriptions [18, 6], including MiniZinc code template generation
[3], scheduling-specific constraint generation [9], and few-shot CP modeling enhanced by
retrieval-augmented generation [12]. In this work, we evaluate LLMs’ ability to generate
CP models in a zero-shot setting, emphasizing both model correctness and conformity to
user-specified output formats. Our contributions are:
1. We propose a novel, iterative approach for zero-shot CP modeling that translates natural

language problem descriptions into valid CP models and extracts solutions in user-specified
formats, facilitating both adoption by domain experts and automated evaluation.
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2. We introduce the Constraint Programming Evaluation (CPEVAL) benchmark, derived
from a diverse set of CP problems in CSPLib, along with an automated evaluation suite
for large-scale assessment. We augment CPEVAL with paraphrased variants to assess
robustness across linguistic variation and mitigate evaluation bias from data memorization.

3. We perform extensive experiments across eight prominent LLMs and two widely-used
CP languages (MiniZinc[13] and PyCSP3[10]). Results show that (1) our proposed
iterative Two-Step method significantly improves model correctness and output format
conformity, with DeepSeek-R1 excelling in both CP languages; and (2) all LLMs experience
performance degradation on paraphrased problems with varying extent.

2 Zero-Shot CP Modeling with LLMs

2.1 Problem Definition
The input to our system consists of: (1) PNL: A natural-language description of the problem;
(2) Pparam: A concise description of input parameters, specifying their meanings, data
formats, and types; (3) POF: Specifications of the expected output formats, namely a list
of required variables and their description and data type, as well as an example output.
Subsequently, our system, denoted as F , transforms these components into a CP model M,
formally, M = F(PNL, Pparam, POF ). See Fig. 1 for example PNL, POF , and Pparam.

The motivation for including explicit output format specification stems from the variety
of valid equivalent ways to model the same problem (e.g., disjunctive vs. time-indexed
formulation for scheduling problems [4]). Consequently, the representation of solutions can
vary significantly, placing an additional burden on users who must interpret the generated
model with potentially unfamiliar solution representations.

2.2 Iterative Modeling Workflow
We consider two workflows for iterative generation. First, we introduce the Direct Instruction
method, which takes the problem context and explicitly instructs the LLM to generate code
that solves the problem and outputs the solution in the user-specified output format. However,
enforcing a complex output format increases the difficulty of the generation task, especially
when the required format has an intricate structure (e.g., scheduling timetable or game
board layout). To address this, we propose a Two-Step method, where the first step focuses
on generating the CP model, and the second focuses on extracting the solution variables
and transforming them into the user-specified output format. For effective output format
validation, we implement an automated output format checker that takes the data types
from POF , assesses the output’s conformity to the prescribed requirements, and produces
error reports when it fails to meet the expected format.

Direct Instruction (DI) Fig. 1 (Method 1) illustrates the direct instruction workflow. The
first step is to prompt the LLM with the problem context P , instructing it to generate a CP
model in the chosen modeling language and output a final solution in the user-specified format
POF . The generated code is extracted and compiled in an IDE with runtime information
collected. If compilation fails, a self-improvement process (§2.2.1) is triggered to correct
the code and reattempt compilation. Once the generated code passes the syntax check, it
is executed, and the solver status is extracted upon completion or timeout. If the solver
returns UNKNOWN or UNSATISFIABLE, the model is deemed semantically incorrect,
and the generation workflow is aborted. Otherwise, if the solver returns a SATISFIABLE
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Figure 1 Illustration of the proposed methods using the classic N-Queens problem from the
CPEVAL benchmark.

or OPTIMAL status, an output format checker evaluates whether the data types of the
output variables align with the user-specified formats POF . Subsequently, if discrepancies
are detected, an error message detailing the discrepancies is sent to the LLM, prompting it
to revise the output format through the self-improvement process. The generated code is
accepted once its outputs conform to the user-specified output format.

Two-Step Method (2S) Fig. 1 (Method 2) presents the Two-Step Method workflow. In
the modeling stage, the problem context (PNL, Pparam) and user-specified output format
(POF ) are provided to the LLM for modeling. However, the LLM is explicitly instructed
to only consider the output format requirements but not to generate any code to comply
with them. The hypothesis code is then evaluated for syntax correctness, and if it fails, an
iterative self-improvement process is triggered for debugging. Upon successfully passing the
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syntax check, the solver must return a SATISFIABLE or OPTIMAL status; otherwise, the
model is deemed semantically incorrect, and the workflow is aborted.

Once the model is solved, all decision variables used in the model are saved to a local file,
and the workflow proceeds to the formatting stage. The LLM is now instructed to generate
Python code that transforms the stored decision variables into the user-specified format.
This step requires the LLM to interpret the problem context and may involve generating
code for additional calculations or adjustments to ensure compliance with POF . Similar to
the DI method, the generated output is then validated by an output format checker, and if
mismatches arise, a self-improvement process is triggered to correct them.

2.2.1 Self-Improving
We employ an iterative self-debugging approach following [5], targeting two types of code
defects: syntax errors identified through IDE compilation and output format mismatches
detected by the output format checker. In the initial step, we input the defective code, along
with any error messages, to the same LLM that generated the original code. In case of syntax
errors, the IDE’s runtime error messages are used to guide debugging. In cases of output
format mismatches detected by the output format checker, a message outlining discrepancies
between the generated output and the expected format is provided to facilitate refinement.
Subsequently, the LLM is instructed to provide a concise explanation of the error’s cause and
to produce a revised version of the code which is then executed in the corresponding IDE. If
new errors are encountered, the updated code and corresponding error messages are fed back
to the LLM for further refinement. This iterative process continues until the hypothesis code
passes its corresponding checker or a user-specified self-improving attempt limit is reached.

3 Experimental Setup

3.1 Models
We employed eight prominent open-source models including Llama-3.3-70B1, DeepSeek-V3-
685B [11], DeepSeek-R1 [8], QWen2.5-70B and QWen2.5-Coder-32B [19], Phi-3.5 mini (3.8B)
[1], and Phi-4 (14.7B) [2], as well as the closed-source model ChatGPT-4o (2024-08-06)2.

3.2 Datasets
We employ CSPLib [7] as the primary source of problems to construct the CPEVAL bench-
mark. Each problem consists of a natural language description, reference models in various
CP languages, and instance data files, when applicable.

Due to time and computational constraints associated with large-scale evaluation, prob-
lems were selected based on criteria facilitating evaluation purposes. We included all problems
with reference MiniZinc model that can be solved within 10 minutes. As a result, the CPEVAL
dataset comprises 30 problems, including 9 constraint optimization problems (COP) and
21 constraint satisfaction problems (CSP) across seven categories and varying levels of
complexity. Each problem in CPEVAL comprises three key components:
1. Problem Description (PNL): We pre-process the problem descriptions to exclude any

images, references, unrelated information, and example solving steps.

1 https://www.llama.com/docs/model-cards-and-prompt-formats/llama3_3/
2 https://openai.com/index/gpt-4o-system-card/



Y. Song and E. Cohen 5

2. Input Parameters (Pparam): The input parameters are derived from the CSPLib
parameter files, each accompanied by a description of its data type, structure, and
meaning. We verify each instance for validity; if multiple instances are available, we select
up to three of the simplest ones based on computational complexity (e.g., preferring a
4-queens instance over a 100-queens instance). During modeling, the LLM is instructed to
generate code that loads these parameters from the file, conditioned on this description.

3. Required Output Format (POF): For each CSPLib problem, we provide a predefined
output format requirement that states the data type, structure, and representation of all
needed output variables.

3.3 Paraphrase Generation
The original CSPLib problems are widely known, and their solutions are publicly available,
raising concerns that evaluation problems have been used to train the LLM, which could lead
to over-estimation of models’ performance due to memorization of the solution rather than
CP modeling capabilities. To assess whether LLMs can effectively interpret a given problem
context and generate correct CP models, we therefore opt to evaluate LLMs’ performance
under linguistic variations. Specifically, an LLM is instructed to paraphrase the original
problem description to simulate how a user might request a modeling service from a CP expert.
The goal is to introduce varied linguistic expressions and simulate different linguistic framings,
allowing for the evaluation of the LLM on problems presented in unfamiliar or diverse linguistic
forms, all while preserving the original underlying semantics. To ensure a diverse set of
paraphrases that could effectively challenge the LLM’s understanding and generalization
capabilities, we introduce two paraphrasing styles: Precision mode, which minimally alters
semantics while preserving technical accuracy, and Colloquial mode, which uses a casual,
conversational tone closer to a layperson’s request for assistance. For each original problem,
we employ Claude-3.5-Sonnet3 to generate three paraphrased versions in each style, with each
paraphrase treated as a distinct problem instance, resulting in 180 paraphrased problems
overall. Since generating paraphrases with the same LLM being evaluated could bias the
paraphrases toward that model’s language patterns and understanding, we excluded the
Claude series from the evaluation.

3.4 Implementation Details
We evaluated the Direct Instruction Method and the Two-Step Method across the CP
modeling languages PyCSP3 (using the ACE solver) and MiniZinc (using Gecode). A
timeout of 10 minutes was set for each solver. For both syntax and output format errors, the
number of self-improvement attempts was limited to 3. The Direct Instruction method was
also compared against a Standalone Mode, where the LLM receives the same prompt but is
allowed only a single attempt to deliver the required output without iterative refinement.

For all LLMs, we set the temperature to zero for deterministic decoding and generate one
model per problem. However, we observed that ChatGPT-4o, with a temperature setting of
zero, did not follow greedy decoding, consistent with prior findings [15]. To mitigate bias
to a single given sample, we sampled multiple models per problem from ChatGPT-4o and
reported average performance across samples. Specifically, five models were sampled for each
original problem, and three models were sampled for each paraphrased problem.

3 https://www.anthropic.com/claude/sonnet
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3.5 Evaluation
We use two criteria to evaluate system performance: (1) Output Format Alignment, which
checks whether the generated output complies with the user-specified format; and (2) Model
Equivalence, which verifies whether each generated model is semantically equivalent to a
reference model. We begin with an output format alignment metric, followed by a manual
model equivalence check. However, manually interpreting and aligning diverse output formats
is expensive and only feasible at small scale. To enable large-scale evaluation, we also present
an automated, unit-test-based approach that closely approximates our manual evaluation.

Output Format Alignment The required output variables are evaluated using the output
format checker described in(§2.2). A generated model’s output is deemed to align with
the required output format POF if it passes this checker, denoted as FC(POF , A) = 1;
otherwise, 0. The output format alignment rate (OFAR) across N problems is then defined
as OFAR = 1

N

∑N
i=1 FC(POF , A).

Manual Model Equivalence Checker We consider two CP models equivalent if their
constraints and solutions are semantically aligned. To assess this, we manually inspect:
(1) Model alignment: we inspect whether the generated model aligns with the reference
model in terms of constraints and objectives; (2) Solution verification: we extract the final
assignment of decision variables from the generated model, map them to the reference model’s
decision variables, and verify the consistency with its constraints. Both checks must pass for
a generated model to be considered equivalent, denoted as I(M̂i ≡ Mi) = 1; otherwise, 0.
The manual model equivalence rate (MMER)—the fraction of generated models equivalent to
their reference models across N problems—is then defined as MMER = 1

N

∑N
i=1 I(M̂i ≡ Mi).

Automated Model Equivalence Checker We approximate the human evaluation process by
creating evaluation scripts for each problem. These scripts take solutions in the predefined
output format and verify whether they satisfy the problem’s constraints and logic as outlined
in the problem description, as well as optimality for COPs. A solution that passes the checker
is deemed equivalent to the reference model (PI(M̂i ≡ Mi) = 1); otherwise, 0. The automated
model equivalence rate (AMER) is defined as AMER = 1

N

∑N
i=1 PI(M̂i ≡ Mi).

4 Results

In §4.1, we present results from a small-scale manual evaluation on the original CPEVAL
problems, comparing the effectiveness of proposed methods and validating the effectiveness
of the automated model equivalence checker with the manual approach. Then, in §4.2, we
perform a large-scale automated evaluation across eight LLMs, evaluating their performance
on the original CPEVAL problems as well as the paraphrased variants.

4.1 Small Scale Manual Evaluation
We start with a small-scale evaluation on the original CPEVAL problems using ChatGPT-4o
with manual model equivalence checking, as shown in Table 1. Here, MMER ∩OFAR denotes
the proportion of generated models that pass both the manual model equivalence check
and the output format checker. “Match” denotes the Jaccard similarity between the set of
generated models passing MMER ∩ OFAR and the set of generated models passing AMER.
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Table 1 Evaluation results on original problems using ChatGPT-4o with 5 samples per problem.
Method marked with † indicates a standalone model without self-improvement.

Method Lang. MMER
(%)

OFAR
(%)

MMER ∩ OFAR
(%)

AMER
(%)

Match
(Jaccard)

Direct Instr.† mzn 50 49 31 31 1
pycsp3 13 19 13 13 1

Direct Instr. mzn 69 63 55 55 1
pycsp3 53 60 53 53 1

Two-Step mzn 67 79 67 66 0.98
pycsp3 54 63 54 54 1

Comparison of Modeling Methods Direct Instruction† (ChatGPT-4o in standalone mode)
exhibits relatively low performance in generating semantically correct models in both MiniZinc
and PyCSP3, with MMER scores of 50% and 13%, respectively. Upon investigation into
the failed cases, we observed that this is primarily due to syntax errors stemming from the
absence of a self-improvement process. Moreover, its ability to align with the predefined
output format is weak, resulting in the lowest MMER ∩ OFAR score for both MiniZinc and
PyCSP3. In contrast, Direct Instruction with self-refinement significantly improves MMER
scores for MiniZinc (50% → 69%) and PyCSP3 (13% → 53%), along with noticeably higher
MMER ∩ OFAR scores for MiniZinc (31% → 55%) and PyCSP3 (13% → 53%).

While the Two-Step Method achieves comparable MMER scores to Direct Instruction
in MiniZinc (67% vs. 69%), it is significantly more effective at ensuring correct output
formatting, leading to a significantly higher OFAR score than Direct Instruction (79% vs.
63%). Additionally, the Two-Step Method consistently outperforms Direct Instruction in
OFAR across all evaluated CP modeling languages and LLMs (results omitted due to space).
Therefore, we focus on the Two-Step Method in the following sections.

Effectiveness of Automated Evaluation We gauge the effectiveness of the automated
evaluation by comparing the alignment between the MMER ∩ OFAR score (models that are
semantically correct and deliver solutions in the predefined format) and the AMER score.

Table 2 Automated evaluation on original and paraphrased problems using the Two-Step Method.

Original Paraphrased

Model Params Lang. OFAR
(%)

AMER
(%)

OFAR
(%)

AMER
(%)

DeepSeek-R1 685B MZN 80 80 80 74
PYCSP3 67 63 61 54

DeepSeek-V3 685B MZN 80 70 76 58
PYCSP3 60 50 62 51

ChatGPT-4o Unknown MZN 79 66 76 65
PYCSP3 63 54 59 47

llama3.3 70B MZN 67 57 57 45
PYCSP3 43 30 33 23

QWen2.5 70B MZN 63 60 59 49
PYCSP3 47 33 46 33

QWen2.5-
Coder

32B MZN 63 47 54 41
PYCSP3 53 43 45 30

Phi-4 14.7B MZN 20 17 16 13
PYCSP3 37 20 33 26

Phi-3.5 mini 3.8B MZN 0 0 3 0
PYCSP3 7 0 9 2
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Notably, across all methods and CP languages, AMER aligns closely with MMER ∩ OFAR.
We also observe consistently high Match scores, with a value of 1 across all methods and CP
modeling languages, except for the Two-Step Method on MiniZinc (0.98). This indicates that
our automated model equivalence checker reliably identifies models that are semantically
equivalent to their reference counterparts and output solutions in the predefined format.

4.2 Large Scale Automated Evaluation
Table 2 presents the results of our large-scale automated (unit test-based) evaluation for
original and paraphrased problems across eight prominent LLMs. Overall, we observe that
larger models tend to achieve higher AMER scores. Among all LLMs, DeepSeek-R1 attains
the highest AMER score with MiniZinc (80%) and PyCSP3 (63%), followed by DeepSeek-V3
(70%) for MiniZinc and ChatGPT-4o (54%) for PyCSP3. Interestingly, QWen2.5-Coder
outperforms Llama3.3 and QWen2.5, both significantly larger, on PyCSP3, demonstrating
the potential benefits of code-related pre-training in Python code generation tasks. The
smaller model Phi-4 obtains significantly lower AMER scores, whereas the even smaller
Phi-3.5 mini struggles to generate valid CP models.

CP Languages Comparison We observe that modeling with MiniZinc consistently outper-
forms PyCSP3 in the AMER score across all LLMs. This suggests that while LLMs exhibit
strong proficiency in generating Python code, this ability does not directly translate into
effective CP modeling with PyCSP3. Moreover, we observe that the robustness of models to
linguistic variations varies across the two modeling languages, as discussed below.

Performance on Paraphrased Problems All LLMs exhibit degradation in AMER when
moving to the paraphrased problems, though the extent of degradation varies. DeepSeek-R1
achieves the highest AMER; however, it experiences a moderate drop on paraphrased tasks
for both MiniZinc (80% → 74%) and PyCSP3 (63% to 54%). DeepSeek-V3, another strong
performer, undergoes a notable performance drop on MiniZinc for paraphrased problems
(70%→58%) but maintains relatively stable AMER scores for PyCSP3 (50% → 51%). In
contrast, ChatGPT-4o’s AMER on paraphrased tasks with MiniZinc remains closely aligned
with its performance on the original problems (66% → 65%), while its AMER for PyCSP3
shows greater sensitivity to paraphrased problems, with a significant drop from 54% to 47%.
Llama3.3-70B shows a consistent performance drop across languages, while QWen2.5-70B
demonstrates a notable decline on MiniZinc (60% → 49%) but remains stable on PyCSP3.
Conversely, QWen2.5-Coder-32B experiences a significant AMER reduction on both MiniZinc
(47% → 41%) and PyCSP3 (43% → 30%), highlighting differences in sensitivity across
problem formulations and languages.

5 Conclusion

We proposed novel iterative workflows that significantly improve LLMs’ CP modeling per-
formance in zero-shot settings. We also introduced CPEVAL, an automated benchmark
augmented with paraphrased problems to account for potential data memorization. Our
results show that DeepSeek-R1 obtains the best performance, that MiniZinc typically yields
better results than PyCSP3, and that LLMs exhibit some performance degradation on
paraphrased problems. Future work includes developing CP-specific prompting strategies
and exploring reinforcement learning-based fine-tuning based on CPEVAL’s feedback signals
(e.g., syntax errors, semantic failures, and output format mismatches).
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