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Abstract11

Synchronous unison is a classical clock synchronization problem in distributed computing, and12

especially in self-stabilization. This paper explores the self-stabilization of a synchronous unison13

algorithm proposed by Arora et al. using a propositional satisfiability-based approach. We give14

a logical formulation of the algorithm. This formulation includes the uniqueness of clock values15

at each node, the updates of clocks based on the minimum clock value in the neighborhood, and16

the detection of convergence or divergence. To optimize the models, additional constraints are17

introduced to reduce redundant cases of initial configurations to be analyzed. Our approach not18

only verifies the algorithm’s behaviour but also offers insights into enhancing its robustness and19

applicability to broader distributed systems.20
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1 Introduction22

The notion of self-stabilization, introduced by Dijkstra in 1974 [10], refers to a distributed23

system’s ability to return autonomously to a legitimate configuration from any initial state,24

ensuring fault tolerance. A key problem is Synchronous Unison, where processes must25

synchronize local clocks modulo a period m. Arora et al. [3] proposed a self-stabilizing26

algorithm for m ≥ max(2, 2D − 1), with D the network diameter, though the tightness of this27

bound remains open [2]. This work, accepted at CP 2025, introduces a formal SAT-based28

approach [4,7] that encodes clock update rules of synchronous unison as CNF constraints,29

enabling systematic verification of stabilization or its absence across different topologies,30

paving the way for optimized analysis of other distributed algorithms.31

2 Synchronous Unison32

We study the synchronous unison problem [3], where n processes communicate over a33

connected graph G = (V, E). Each process p maintains a clock variable p.c ∈ {0, . . . , m − 1},34

where m is a global period. In each synchronous round, enabled processes update their clock to35

(min{q.c : q ∈ N(p)∪{p}}+1) mod m. The global state at time i is a configuration γi ∈ Γn,m,36

with Γn,m = {0, . . . , m − 1}n. The algorithm aims to reach a legitimate configuration where37

all clocks are equal. It is said to converge if this state is eventually reached from any38

initial configuration, and diverge if some executions remain forever unsynchronized [8,11].39

Convergence is guaranteed for all connected graphs of diameter D when m ≥ 2D − 1, with40

stabilization in at most 3D − 2 rounds [2]. To analyze self-stabilization behaviour for a given41

m, we must examine up to mn configurations but we reduce this bound to a reasonable42

number in order to avoid combinatorial explosion, following the principles of Bounded Model43
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2 Analyzing Self-stabilization of Synchronous Unison via Propositional Satisfiability

Checking (BMC) [5]. We encode this dynamic behavior as a SAT instance using Boolean44

variables and CNF constraints in order to take full advantage of modern SAT solvers, which45

are able to efficiently solve complex instances with a high number of variables and clauses46

[6, 13].47

3 Formal Modeling of Synchronous Unison through SAT48

We model synchronous unison on a network G = (V, E) of n processes with clock values49

in M = {0, . . . , m − 1} over tf time steps T = {0, . . . , tf − 1}. Variables hp,t,v encode50

whether process p has clock v at time t, ensuring clock uniqueness per process via cardinality51

constraints. Clock updates are defined so each process sets its next clock to one plus the52

minimum clock in its closed neighborhood, modulo m. Convergence is expressed by requiring53

that no final configuration has all clocks equal, while divergence is modeled by detecting cycles54

where an illegitimate initial configuration repeats later in the execution. Additional variables55

ct and sp,t,v capture cycles and clock similarities between configurations. The constraints are56

transformed into CNF, with complexity mainly dependent on the graph’s maximal degree,57

number of nodes, period and number of analyzed configurations. This formalization enables58

reasoning about convergence and divergence properties of the synchronous unison algorithm59

through SAT solving.60

4 Experimental Evaluation61

We analyzed classical network topologies—chains, rings, and stars—defined by node count62

n, period m, diameter D, and maximum degree dmax. Using Python and PySAT with the63

Cadical solver on an Intel Core i7, we generated 4968 instances: n = 3−20, m = 2−20 for chains64

and rings, and n = 3−10, m = 2−10 for stars. Models included initial convergence/divergence65

(INICNV, INIDIV) and elimination constraints—rotation elimination (RE), lexicographic66

order (LO), and convergence variants (ICP , ICX)—plus combinations. We set the number67

of analyzed configurations to tf = 3D. Convergence occurred for m ≥ max{2, 2D − 1},68

though some instances converged earlier. Stars had tight bounds: divergence at m = 2,69

convergence at m ≥ 3. The model solved most instances but slowed for larger graphs,70

especially for stars due to high topology degree. Best results were achieved though constraint71

combinations: ER + ICX for rings and LO + ICP for stars. These refinements enhance72

scalability, particularly in high-degree or centralized networks.73

5 Conclusion74

We present a SAT-based approach to analyze the self-stabilizing synchronous unison al-75

gorithm [3], detecting convergence and divergence in chains, rings, and stars. Encoding states76

as logical constraints enables to detect convergence or prove divergence. Model Efficiency77

was improved by eliminating redundant initial configurations. Divergence was observed and78

proven to occur in stars for period m = 2. Future work targets other graph types, tighter79

bounds, and symmetry-based cycle detection as well as extending insights to asynchronous80

models [8, 9] and dynamic topologies [1, 12].81
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