
Analyzing Self-stabilization of Synchronous Unison1

via Propositional Satisfiability2

Asma Khoualdia #3

MIS UR 4290, Université de Picardie Jules Verne, Amiens, France4

Sami Cherif #5

MIS UR 4290, Université de Picardie Jules Verne, Amiens, France6

Stéphane Devismes #7

MIS UR 4290, Université de Picardie Jules Verne, Amiens, France8

Léo Robert #9

MIS UR 4290, Université de Picardie Jules Verne, Amiens, France10

Abstract11

Synchronous unison is a classical clock synchronization problem in distributed computing, and12

especially in self-stabilization. This paper explores the self-stabilization of a synchronous unison13

algorithm proposed by Arora et al. using a propositional satisfiability-based approach. We give14

a logical formulation of the algorithm. This formulation includes the uniqueness of clock values15

at each node, the updates of clocks based on the minimum clock value in the neighborhood, and16

the detection of convergence or divergence. To optimize the models, additional constraints are17

introduced to reduce redundant cases of initial configurations to be analyzed. Our approach not18

only verifies the algorithm’s behaviour but also offers insights into enhancing its robustness and19

applicability to broader distributed systems.20

Keywords and phrases Self-stabilization, Synchronous Unison, Satisfiability21

1 Introduction22

The notion of self-stabilization, introduced by Dijkstra in 1974 [10], refers to a distributed23

system’s ability to return autonomously to a legitimate configuration from any initial state,24

ensuring fault tolerance. A key problem is Synchronous Unison, where processes must25

synchronize local clocks modulo a period m. Arora et al. [3] proposed a self-stabilizing26

algorithm for m ≥ max(2, 2D − 1), with D the network diameter, though the tightness of this27

bound remains open [2]. This work, accepted at CP 2025, introduces a formal SAT-based28

approach [4,7] that encodes clock update rules of synchronous unison as CNF constraints,29

enabling systematic verification of stabilization or its absence across different topologies,30

paving the way for optimized analysis of other distributed algorithms.31

2 Synchronous Unison32

We study the synchronous unison problem [3], where n processes communicate over a33

connected graph G = (V, E). Each process p maintains a clock variable p.c ∈ {0, . . . , m − 1},34

where m is a global period. In each synchronous round, enabled processes update their clock to35

(min{q.c : q ∈ N(p)∪{p}}+1) mod m. The global state at time i is a configuration γi ∈ Γn,m,36

with Γn,m = {0, . . . , m − 1}n. The algorithm aims to reach a legitimate configuration where37

all clocks are equal. It is said to converge if this state is eventually reached from any38

initial configuration, and diverge if some executions remain forever unsynchronized [8,11].39

Convergence is guaranteed for all connected graphs of diameter D when m ≥ 2D − 1, with40

stabilization in at most 3D − 2 rounds [2]. To analyze self-stabilization behaviour for a given41

m, we must examine up to mn configurations but we reduce this bound to a reasonable42

number in order to avoid combinatorial explosion, following the principles of Bounded Model43

mailto:asma.khoualdia@etud.u-picardie.fr
mailto:sami.cherif@u-picardie.fr
https://orcid.org/0000-0003-4646-9982
mailto:stephane.devismes@u-picardie.fr
https://orcid.org/0000-0003-4646-9982
mailto:leo.robert@u-picardie.fr
https://orcid.org/0000-0002-9638-3143


2 Analyzing Self-stabilization of Synchronous Unison via Propositional Satisfiability

Checking (BMC) [5]. We encode this dynamic behavior as a SAT instance using Boolean44

variables and CNF constraints in order to take full advantage of modern SAT solvers, which45

are able to efficiently solve complex instances with a high number of variables and clauses46

[6, 13].47

3 Formal Modeling of Synchronous Unison through SAT48

We model synchronous unison on a network G = (V, E) of n processes with clock values49

in M = {0, . . . , m − 1} over tf time steps T = {0, . . . , tf − 1}. Variables hp,t,v encode50

whether process p has clock v at time t, ensuring clock uniqueness per process via cardinality51

constraints. Clock updates are defined so each process sets its next clock to one plus the52

minimum clock in its closed neighborhood, modulo m. Convergence is expressed by requiring53

that no final configuration has all clocks equal, while divergence is modeled by detecting cycles54

where an illegitimate initial configuration repeats later in the execution. Additional variables55

ct and sp,t,v capture cycles and clock similarities between configurations. The constraints are56

transformed into CNF, with complexity mainly dependent on the graph’s maximal degree,57

number of nodes, period and number of analyzed configurations. This formalization enables58

reasoning about convergence and divergence properties of the synchronous unison algorithm59

through SAT solving.60

4 Experimental Evaluation61

We analyzed classical network topologies—chains, rings, and stars—defined by node count62

n, period m, diameter D, and maximum degree dmax. Using Python and PySAT with the63

Cadical solver on an Intel Core i7, we generated 4968 instances: n = 3−20, m = 2−20 for chains64

and rings, and n = 3−10, m = 2−10 for stars. Models included initial convergence/divergence65

(INICNV, INIDIV) and elimination constraints—rotation elimination (RE), lexicographic66

order (LO), and convergence variants (ICP , ICX)—plus combinations. We set the number67

of analyzed configurations to tf = 3D. Convergence occurred for m ≥ max{2, 2D − 1},68

though some instances converged earlier. Stars had tight bounds: divergence at m = 2,69

convergence at m ≥ 3. The model solved most instances but slowed for larger graphs,70

especially for stars due to high topology degree. Best results were achieved though constraint71

combinations: ER + ICX for rings and LO + ICP for stars. These refinements enhance72

scalability, particularly in high-degree or centralized networks.73

5 Conclusion74

We present a SAT-based approach to analyze the self-stabilizing synchronous unison al-75

gorithm [3], detecting convergence and divergence in chains, rings, and stars. Encoding states76

as logical constraints enables to detect convergence or prove divergence. Model Efficiency77

was improved by eliminating redundant initial configurations. Divergence was observed and78

proven to occur in stars for period m = 2. Future work targets other graph types, tighter79

bounds, and symmetry-based cycle detection as well as extending insights to asynchronous80

models [8, 9] and dynamic topologies [1, 12].81



A. Khoualdia, S. Cherif, S. Devismes and L. Robert 3

References82

1 Karine Altisen, Stéphane Devismes, Anaïs Durand, Colette Johnen, and Franck Petit. Self-83

stabilizing systems in spite of high dynamics. Theor. Comput. Sci., 964:113966, 2023. URL:84

https://doi.org/10.1016/j.tcs.2023.113966, doi:10.1016/J.TCS.2023.113966.85

2 Karine Altisen, Stéphane Devismes, Swan Dubois, and Franck Petit. Introduction to Distributed86

Self-Stabilizing Algorithms. Synthesis Lectures on Distributed Computing Theory. Morgan &87

Claypool, 2019.88

3 Anish Arora, Shlomi Dolev, and Mohamed G. Gouda. Maintaining digital clocks in step.89

Parallel Processing Letters, 1:11–18, 1991. doi:10.1007/bfb0022438.90

4 Armin Biere. Handbook of satisfiability. In Frontiers in Artificial Intelligence and Applications,91

pages 75–98. IOS Press, 2009. doi:10.3233/978-1-58603-929-5-75.92

5 Armin Biere. Bounded model checking. In Armin Biere, Marijn Heule, Hans van Maaren,93

and Toby Walsh, editors, Handbook of Satisfiability - Second Edition, volume 336 of Frontiers94

in Artificial Intelligence and Applications, pages 739–764. IOS Press, 2021. doi:10.3233/95

FAIA201002.96

6 Armin Biere, Marijn Heule, and Hans van Maaren. Handbook of Satisfiability: Second97

Edition. Frontiers in Artificial Intelligence and Applications. IOS Press, 2021. URL: https:98

//books.google.fr/books?id=dUAvEAAAQBAJ.99

7 Stephen A. Cook. The complexity of theorem-proving procedures. Proceedings of the Third100

Annual ACM Symposium on Theory of Computing (STOC), pages 151–158, 1971. doi:101

10.1145/800157.805047.102

8 Jean-Michel Couvreur, Nissim Francez, and Mohamed G. Gouda. Asynchronous unison103

(extended abstract). In The 12th International Conference on Distributed Computing Systems104

(ICDCS), pages 486–493. IEEE Computer Society, 1992. doi:10.1109/ICDCS.1992.235005.105

9 Stéphane Devismes, David Ilcinkas, Colette Johnen, and Frédéric Mazoit. Being efficient in106

time, space, and workload: a self-stabilizing unison and its consequences. In Olaf Beyersdorff,107

Michal Pilipczuk, Elaine Pimentel, and Kim Thang Nguyen, editors, 42nd International108

Symposium on Theoretical Aspects of Computer Science, STACS 2025, March 4-7, 2025, Jena,109

Germany, volume 327 of LIPIcs, pages 30:1–30:18. Schloss Dagstuhl - Leibniz-Zentrum für110

Informatik, 2025. URL: https://doi.org/10.4230/LIPIcs.STACS.2025.30, doi:10.4230/111

LIPICS.STACS.2025.30.112

10 Edsger W. Dijkstra. Self-stabilizing systems in spite of distributed control. Commun. ACM,113

17(11):643–644, 1974. doi:10.1145/361179.361202.114

11 Danny Dolev and Dahlia Malkhi. Consensus: Perspectives and challenges. In Proceedings115

of the Tenth International Workshop on Distributed Algorithms (WDAG), pages 1–12, 1995.116

doi:10.1007/3-540-60220-8_1.117

12 Shlomi Dolev and Ted Herman. Superstabilizing protocols for dynamic distributed systems.118

Chicago Journal of Theoretical Computer Science, 1995.119

13 João P. Marques-Silva and Karem A. Sakallah. Grasp: A search algorithm for propositional120

satisfiability. IEEE Transactions on Computers, 48(5):506–521, 1999.121

https://doi.org/10.1016/j.tcs.2023.113966
https://doi.org/10.1016/J.TCS.2023.113966
https://doi.org/10.1007/bfb0022438
https://doi.org/10.3233/978-1-58603-929-5-75
https://doi.org/10.3233/FAIA201002
https://doi.org/10.3233/FAIA201002
https://doi.org/10.3233/FAIA201002
https://books.google.fr/books?id=dUAvEAAAQBAJ
https://books.google.fr/books?id=dUAvEAAAQBAJ
https://books.google.fr/books?id=dUAvEAAAQBAJ
https://doi.org/10.1145/800157.805047
https://doi.org/10.1145/800157.805047
https://doi.org/10.1145/800157.805047
https://doi.org/10.1109/ICDCS.1992.235005
https://doi.org/10.4230/LIPIcs.STACS.2025.30
https://doi.org/10.4230/LIPICS.STACS.2025.30
https://doi.org/10.4230/LIPICS.STACS.2025.30
https://doi.org/10.4230/LIPICS.STACS.2025.30
https://doi.org/10.1145/361179.361202
https://doi.org/10.1007/3-540-60220-8_1

	1 Introduction
	2 Synchronous Unison
	3 Formal Modeling of Synchronous Unison through SAT
	4 Experimental Evaluation
	5 Conclusion

