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Abstract20

Implicit Hitting Set (IHS) Solving has been a successful approach in state-of-the-art solvers for21

Maximum Satisfiability (MaxSAT). Similar to solution-improving search and core-guided search,22

IHS has also recently been ported from MaxSAT to Pseudo-Boolean Optimization. Unlike the other23

techniques, there are currently no certified IHS solvers according to our knowledge. Traditionally,24

the IHS problem has been solved using an integer linear programming solver which does not have25

proof logging. We propose to use the certifying pseudo-Boolean solver RoundingSat with VeriPB26

proof logging to solve the IHS problem which allows us to build a reusable and certifying IHS solver.27

We also tightly integrate local search into the solver. Our work in progress implementation shows28

that proofs for solved instances are verified by VeriPB and the formally verified checker CakePB.29

2012 ACM Subject Classification Theory of computation → Logic and verification; Mathematics of30

computing → Combinatorial optimization31

Keywords and phrases implicit hitting set solving, pseudo-Boolean optimization, local search, proof32

logging, certifying algorithms, 0–1 integer linear programming33

Digital Object Identifier 10.4230/LIPIcs...34

1 Introduction35

Pseudo-Boolean solving and optimization use 0–1 integer linear inequalities to express the36

constraints. Pseudo-Boolean solving is a generalization of Boolean Satisfiability (SAT) since37

SAT-CNF clauses can be expressed in terms of 0–1 integer linear inequalities. At the same38

time, pseudo-Boolean optimization is a restriction of integer linear programming since the39

values of the variables are restricted to 0 or 1.40

Pseudo-Boolean optimization can be seen as a generalization of Maximum Satisfiability41

(MaxSAT) that is the optimization version of SAT. The MaxSAT paradigm includes algorithms42
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such as solution-improving search [9], core-guided search [11] and implicit hitting set (IHS)43

search [7] that all recently been successfully ported to pseudo-Boolean optimization [8, 19].44

Certifying algorithms [1, 16] have for a long time been the standard in SAT solving [14, 13].45

However, certification is often harder in more expressive paradigms such as MaxSAT and46

pseudo-Boolean optimization. VeriPB proof logging [3, 12] has in more recent times allowed to47

certifying algorithms for solution-improving search [20] and core-guided search [2] in MaxSAT.48

However, there is no certifying algorithms for IHS search according to our knowledge.49

Our current main contribution is a certifying implementation of implicit hitting set solving50

for pseudo-Boolean optimization with local search [6] and a reusable pseudo-Boolean solver51

to solve the IHS problem. The certified implicit hitting set solver has been implemented52

using the certified pseudo-Boolean solver RoundingSat [10, 15] and some extra proof logging53

of IHS that is verified by VeriPB and the formally verified checker CakePB [4].54

2 Preliminaries55

2.1 Pseudo-Boolean Optimization56

A variable xi in pseudo-Boolean optimization is a Boolean variable that can take the value 057

or 1. We denote the positive version of the variable xi as xi and its negation as xi = 1− xi.58

A literal ℓi is either xi or xi. A pseudo-Boolean constraint C is a linear inequality of the59

form C
.=

∑
i aiℓi ≥ A, where ai are non-negative integer coefficients, ℓi are literals and A is60

the non-negative integer stating the degree of falsity. We say that C is satisfied under the61

assignment α, that maps variables to 0 or 1, if the inequity C holds when substitution the62

value of the variables in α.63

A pseudo-Boolean satisfaction problem F is a set of pseudo-Boolean constraints and is64

a pseudo-Boolean optimization problem if it also contains an objective O
.=

∑
i wiℓi that65

should be minimized, where wi (without loss of generality) are non-negative integers.66

2.2 Implicit Hitting Set Search67

Implicit hitting set solving splits a pseudo-Boolean optimization problem (F, O) into a68

pseudo-Boolean satisfaction problem F , which will be called the decision problem, and a69

pseudo-Boolean optimization problem (K, O), which will be called the IHS problem, where70

K is a set of core constraints (initial empty) only over objective variables that grows during71

search. The IHS problem will at all times only consists of constraints implied by F such that72

any lower bound for the IHS problem is also a lower bound for the original problem. The73

idea is then to solve the simpler IHS problem to optimality to find an optimistic solution α74

and check if it the solution can be extended to a full solution β (containing all variables) for75

the decision problem. If yes, then the optimal solution has been found since α gives a lower76

bound, β gives an upper bound and the objective values of α and β are the same. If the77

solution cannot be extended, then a core constraint D can be extracted that describes why78

α was too optimistic such that is not found again. D is added to K before optimizing the79

IHS problem again.80

2.3 Local Search81

Local search is an incomplete method, i.e. it is not guaranteed to return an optimal solution.82

It starts with a full (not necessarily satisfiable) variable assignment β and keeps track of83

the current best solution βbest found. In every iteration, it flips one variable based on84

clause-weighting techniques that are used to find the most promising variables to flip. This85
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yields a new variable assignment β′ that replaces the current best solution βbest if β′ satisfies86

all constraints in F and has a better objective value than βbest.87

2.4 VeriPB Proofs88

VeriPB proofs consist of a sequence of proof lines that each check if a given constraint can89

be derived in the way specified in the proof line. The relevant rules and their purpose for90

certifying IHS will very briefly be described. RoundingSat already produce proofs for conflict91

analysis using the pol-rule that allows to do cutting planes derivations (using addition,92

multiplication, division, saturation, and weakening). The red-rule, that is a generalization93

of the RAT-rule [18,8] used in SAT proof logging, can be used to introduce a new variable94

y with the same meaning as a constraint C
.=

∑
i aiℓi ≥ A via reification, i.e. y ⇔ C.95

This corresponds to the two pseudo-Boolean constraints (y ⇒ C) .= Ay +
∑

iaiℓi ≥ A and96

(y ⇐ C) .=
(∑

iai −A + 1
)
y +

∑
iaiℓi ≥

(∑
iai −A + 1

)
. Finally, the soli-rule allows to log97

a solution β to introduce a solution-improving constraint
∑

i wiℓi ≤ O(β)− 1, where O(β) is98

the objective value of β, stating that a better solution should exists.99

3 Pseudo-Boolean Implicit Hitting Set Search100

1 Function IHS(F, O)
2 βbest ← LocalSearch(F, O);
3 if βbest = ⊥ then βbest ← Solve(F, ∅);
4 if βbest = ⊥ then return ⊥;
5 lb← 0;
6 ub← O(βbest);
7 K ← Seeding(F, O);
8 while true do
9 lb, {α1, . . . , αm} ← Optimize(K, O, lb, ub);

10 if lb ≥ ub then return βbest;
11 ub, βbest, K ← ProcessSolutions(F, ub, βbest, K, {α1, . . . , αm});
12 if lb ≥ ub then return βbest;
13 end

Algorithm 1 Overview of our IHS algorithm implementation from [5].

3.1 Initialization101

Algorithm 1 shows an overview of our implementation of IHS that is based on the description102

in [19]. It takes a pseudo-Boolean optimization problem (F, O) as input. First (line 2), local103

search is run on the original problem to try to find an initial solution. If it fails (line 3), then104

the complete pseudo-Boolean solver is run on the original problem without the objective to105

check if F is satisfiable or not. In case no solution is found (βbest = ⊥, line 4), then the106

algorithm reports that there is no solution. In case there is a solution, the lower bound (line107

5) is set to 0 and the upper bound (line 6) is set to the objective value of the found solution.108

The set of core constraints K (line 7) is initialized with core constraints already present109

in the original problem F . This technique is called constraint seeding [19]. The idea is to110

take all constraints from F that are only over variables present in the objective and put them111

directly into K. We extend this technique by also trying to weaken non-objective variables112

SATCPDP 2025
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from constraints to obtain non-trivial cores. For instance, if x1 and x2 are in the objective,113

then x3 can be weakened in x1 + x2 + x3 ≥ 2 to obtain the core constraint x1 + x2 ≥ 1.114

However, weakening x3 in x1 + x2 + x3 ≥ 1 would yield the trivial constraint x1 + x2 ≥ 0115

and thus is not added. All seeded constraints are either present in the formula or can be116

derived using the pol-rule with weakening steps.117

The main loop (line 8-13) runs until the lower and upper bounds meet (line 10 and118

12). Note that this is slightly different from the description in section 2.2 where only the119

lower bound would increase because the IHS problem (K, O) was always solved to optimality120

in that description. In practice, it is very expensive to always solve to optimality, so an121

alternative approach is to instead guarantee to always make progress by either improving the122

upper bound or find a core constraint to avoid finding the same solution again [19]. Therefore,123

the IHS solver could stop as soon as it has a solution better than the current upper bound.124

3.2 Solving the IHS Problem125

The IHS problem (K, O) is solved (line 9) by either an incremental local search solver or a126

reusable complete pseudo-Boolean solver that both are initialized with the core constraints.127

The incremental aspect is that it is possible to add new core constraints to the solvers without128

having to start over from scratch every time a new constraint is added. It is currently work129

in progress how often local search should be used compared the complete solver and how130

often it makes sense to solve to optimality.131

3.2.1 Local Search132

The local search solver can either run until it finds a solution better than the current133

upper bound or until it reaches its iteration/time limit. In the first case, it finds a single134

solution while it might find zero or more solutions in the latter case which is denoted as135

{α1, . . . , αm} in Algorithm 1. In case local search does not find any solutions then the136

complete pseudo-Boolean solver is run to find solutions. Otherwise, the solutions from local137

search are processed as described in section 3.3. Note that the lower bound is not updated138

when local search is used since it is not known if the solution is optimal. The local search139

algorithm does not have to be certifying since it is enough to check that the found solutions140

are valid as a proof that they are valid solutions.141

3.2.2 Reusable Complete Pseudo-Boolean Solver142

The complete pseudo-Boolean solver can either run until it finds a solution better than the143

current upper bound or to optimality meaning that it finds at least one solution. In case it is144

solved to optimality, the lower bound is updated (line 9). The solver uses solution-improving145

search which normally introduces unconditionally solution-improving constraints whenever146

a solution is found. These constraints could be used to learn constraints that would not147

be valid in the next call. In order to be able to reuse these learned constraints, we instead148

introduce reified solution-improving constraints such that these are only turned on when149

they are valid. For instance, if the solver finds a solution of value 9 then it would introduce150

a new variable y9 ⇔ (O ≤ 8) with the exact meaning that a solution with value 9 has been151

found. This can be justified by the red-rule as described in section 2.4. The solver then152

continues its search while assuming y9 such that O ≤ 8 is enforced. When the solver then153

finds a better solution with value 4 then it introduces y4 ⇔ (O ≤ 3) as well as the clause154

y4 ⇒ y9
.= y4 + y9 ≥ 1 because O ≤ 3 clearly implies O ≤ 8 and we still want the constraints155
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for y9 to be valid when we now instead assume y4. This constraint is justified by adding156

y4 ⇐ (O ≤ 3) and y9 ⇒ (O ≤ 8) with the pol-rule and divide it to a clause. When the solver157

has to solve the updated IHS problem, it just starts with no assumptions and then introduce158

reified solution-improving constraints unless they already exist.159

In case the (global) upper bound ub is updated (line 11), then an unconditional solution-160

improving constraint is added to the IHS problem and justified using the soli-rule. This161

would propagate all reified variables representing solution-improving constraints with values162

that are at least ub to 1 as units. Hence, these reified variables would vanish from all163

constraints as if the constraints were derived with the unconditional solution-improving164

constraint. When lb = ub then the IHS solver is used to show optimality. At this point, it is165

possible to derive O ≥ lb from the IHS problem, and the unconditional solution-improving166

constraint O ≤ ub− 1 is also added to the IHS problem. Hence, adding these constraints167

using the pol-rule would yield contradiction 0 ≥ lb− ub + 1 ≥ 1.168

3.3 Processing Solutions169

Standard IHS solving only returns one solution at a time but there is no reason to throw170

away a solution unless it does not guarantee progress. In case multiple solutions were found171

then the solution α with the smallest objective value is considered. Note that the solutions172

are found with strictly decreasing objective value, so no sorting is needed. α is given to173

the decision problem where it is either used for single, independent or weight-aware core174

extraction [19]. In case the solution α can be extended to a full solution β then the upper175

bound is updated if the objective value of β is better that the current upper bound. This is176

always the case if no cores are found but might not be the case if independent or weight-aware177

core extraction removed some of the assumptions. If the upper bound is improved, then178

all unprocessed solutions that does not have a better objective value are discarded. If the179

decision solver returns core constraints, then all solutions that falsifies at least one of the180

core constraints are discarded. Hence, there is progress in both cases. Note that the current181

processed solution α will be discarded in both cases. The process continues until there are182

no solutions left.183

4 Experimental Evaluation184

The algorithm and techniques have been implemented in the complete pseudo-Boolean solver185

RoundingSat [10] with integration of local search [6]. The solver was run with different186

configurations on the optimization (OPT-LIN) instances of the pseudo-Boolean competition187

2024 [17]. Currently, the performance of the implementation is still work in progress. However,188

the generated proofs of the solved instances were all successfully checked by VeriPB and the189

formally verified checker CakePB [4].190

An early certifying version of the solver (not using local search) was submitted to the191

pseudo-Boolean competition 2025 [18] where results can be found when they are published.192

5 Concluding Remarks193

We have implemented a certifying implicit hitting set optimizer for pseudo-Boolean optimiza-194

tion problems that is verified by VeriPB and the formally verified checker CakePB. Local195

search is integrated such that it can be used in an incremental manner and the complete196

pseudo-Boolean solver is reusable such that they do not have to start from scratch when they197

SATCPDP 2025
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solve the implicit hitting set problem. However, the performance of the current implementa-198

tion still needs polishing to improve performance to compete with the current state-of-the-art199

IHS solvers.200
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