
Modelling Multi-dimensional Arrays in Unified1

Planning2

Carla Davesa #3

School of Computer Science, University of St Andrews, UK4

Joan Espasa5

School of Computer Science, University of St Andrews, UK6

Ian Miguel7

School of Computer Science, University of St Andrews, UK8

Mateu Villaret9

Departament d’Informàtica, Matemàtica Aplicada i Estadística, Universitat de Girona, Spain10

Abstract11

Planning is a fundamental activity, arising frequently in many contexts, from daily tasks to industrial12

processes. It consists of selecting a sequence of actions to achieve a specified goal from specified13

initial conditions. The Planning Domain Definition Language (PDDL) is the leading language used14

in the field of automated planning to describe planning problems. Previous work has highlighted15

the limitations of PDDL, particularly in terms of its expressivity. Our interest lies in facilitating16

the handling of complex problems to enhance the overall capability of automated planning systems.17

To pursue this agenda, we must identify patterns in the planning problems that we wish to solve.18

The present work is motivated by the prevalence of grid structure in planning problems, which is19

a significant challenge to model in PDDL, especially when complex operations on grid indices are20

required. We situate our work in Unified Planning (UP), which offers an API to specify planning21

problems and transform them into inputs suitable for specific planners. We present an extension22

of the UP library to enhance its expressivity for high-level problem modelling: we have added an23

array type, an expression to count satisfied Boolean expressions, an integer range variable type, and24

support for integer parameters in actions. Within the UP framework, we have developed compilers25

that transform these extensions into acceptable representations for the UP’s integrated planners.26

By providing alternative compilation pathways we enable the automated exploration of a variety of27

models with different performance characteristics from a single high-level model. We show that our28

UP extensions enable natural high-level models for six benchmark planning problems, and support29

the automatic generation of multiple low-level variants. The resulting models are competitive with,30

and in some cases outperform, hand-crafted models from the literature.31

2012 ACM Subject Classification Theory of computation; Computing methodologies → Planning32

and scheduling33

Keywords and phrases Automated Planning, Reformulation, Modelling34

1 Introduction35

Automated Planning is a branch of Artificial Intelligence that focuses on selecting sequences36

of actions to achieve desired goals from specified initial conditions. Planning problems arise37

frequently in many contexts, from daily tasks to industrial processes.38

The Planning Domain Definition Language (PDDL)[9] is the leading language used in39

automated planning to model planning problems. It provides a formal way to describe a40

problem in terms of objects, predicates, actions, and functions with parameters. A study [16]41

discussed the limitations of PDDL, highlighting its low level of abstraction, which forces the42

modeller to encode ubiquitous n-valued state variables (e.g. bounded integer variables) as43

sets of Boolean variables. We aim to provide a more expressive modelling language, combined44

with automated methods for compilation to PDDL, both to remove the burden from the45

mailto:cds@st-andrews.ac.uk

2 Modelling Multi-dimensional Arrays in Unified Planning

user of manual modelling in PDDL and to support the automatic exploration of alternative46

models. To pursue this agenda, we need to identify patterns in the planning problems that we47

wish to solve. The present work is motivated by the prevalence of grid structure in planning48

problems, which is a significant challenge to model in PDDL [3], especially when complex49

operations on grid indices are required.50

We situate our work in Unified Planning (UP) [14], a Python library with an API to51

specify planning problems and can transform them into PDDL. Our main contribution is a set52

of UP extensions, including a new Array type for multidimensional structures, full support for53

bounded integer parameters in actions, a new integer range variable type, and an expression54

to evaluate the number of satisfying statements among multiple Boolean expressions. We55

have also developed six compilers that can automatically compile these features away,56

maintaining compatibility with the supported planning engines and infrastructure. By57

providing alternative compilation pathways we also enable the exploration of a variety of58

models with different performance characteristics from a single high-level model. We show59

how our extensions support natural modelling of six benchmark planning problems and60

demonstrate that the compiled models are competitive with, and sometimes outperform,61

handcrafted models from the literature.62

2 Background and Related Work63

A classical planning problem consists of finding a plan: a sequence of actions applicable64

from the initial state to a goal state. States are typically defined by Boolean state variables65

(fluents) and actions by their preconditions that define in which states an action is applicable,66

and effects that define the changes to perform on the values of the state variables once the67

action has been applied. The goal is usually a (partial) valuation over the fluents. State68

changes occur only through action applications, and effects are fully deterministic.69

The Planning Domain Definition Language (PDDL) [9] provides a declarative language70

for modelling planning problems. Over the years, PDDL has evolved to include support for71

features such as numeric types, temporal constraints, and conditional effects. However, some72

of these extensions are “conditioned” by the limitations of search-based solvers, which do not73

allow functionalities such as integer parameters in action templates, nor support complex74

data structures such as arrays. Several works remark the significant lack of expressiveness in75

PDDL, particularly when it comes to representing more complex planning scenarios [8, 16, 3].76

Previous works in the literature have explored the idea of enhancing planning languages77

with more expressive representations. Functional STRIPS [7] or Planning Modulo Theories78

(PMT) [11], for example, could support multi-dimensional arrays. Unfortunately, these79

approaches are either unreleased, or no longer maintained. Hence, by considering the80

available and well supported planners, we are limited to using state-of-the-art planners based81

on PDDL despite their limited expressivity. Languages such as ANML [18] can express82

structured types, but no planner supports it. Recent work [1] proposed a modelling language83

supporting complex data types which are reduced to a Boolean representation and then84

PDDL, leveraging existing classical planners.85

Our approach differs by treating numeric planning as a first-class citizen, supporting it86

as both source and target in our transformations. In addition, we integrate these capabilities87

directly into the UP library [14], taking advantage of all the facilities that the library provides.88

That is, our work extends the foundation of the library by using the simplicity of Python89

and extensive ecosystem to create more intuitive models.90

C. Davesa, J. Espasa, I. Miguel, and M. Villaret 3

3 The Unified Planning Framework Pipeline91

Unified Planning (UP) [14] streamlines the process of transforming planning problems into92

formats suitable for input to various planners.93

Figure 1 Automated Planning Modelling Pipeline

Figure 1 shows the stages of this
pipeline. The first step is to define
a planning problem instance, which
serves as a container for fluents,
actions, objects, initial state, and
goals. Objects are typed entities
in the domain. Like PDDL, UP
uses a lifted representation of the
problem, with parameterised state
variables and actions, enabling a
concise definition of the problem.

We distinguish two representation levels to clarify when compilation is needed. If the94

problem contains no high-level features or the planner already supports them, no compilation95

is required.96

High-Level UP Representation: Planning problems can be modelled using high-level97

features like conditional effects, quantifiers, and user-type fluents. These features might98

not be supported by all planners, requiring the use of compilers to transform the problem99

into a compatible low level. We categorise the proposed implementations, array type, count100

expression, range variable, and integer parameters in actions, as high-level representations.101

Planner-Specific UP Representation: After applying the necessary compilers, the102

problem is simplified to match the features supported by the target planner, while preserving103

its original semantics. UP can then transform the representation of problems into various104

specific planning languages such as PDDL and ANML [18].105

Solver: Finally, the converted planning problem is fed into a planner for solution. UP106

provides access to a variety of planners, each supporting particular fragments of PDDL or107

ANML. The planner employs search algorithms and planning techniques to find a plan that108

transitions from the initial state to the goal state.109

4 The Proposed UP Extensions110

We present four extensions to the Unifed Planning framework that enhance modelling111

flexibility: support for array types, integer parameters in actions, a new expression to count112

satisfied Boolean conditions, and a new variable type for quantification over integer ranges.113

We illustrate these contributions through two running examples: n-Puzzle and Plotting.114

Array Type We introduce the ArrayType class in UP to represent arrays with a fixed115

number of elements of a specified type. It takes two parameters: size, specifying the number116

of elements; and elements_type, defining the type of each element (defaulting to Boolean if117

not provided, consistent with UP’s default fluent type behaviour). By allowing fluents to118

have an ArrayType as their type, each element in the array can be accessed and treated as119

an individual fluent, while their relative positions within the array are inherently preserved.120

Furthermore, since arrays are considered types themselves, it becomes possible to define121

nested arrays, such as tables or matrices.122

4 Modelling Multi-dimensional Arrays in Unified Planning

Declaring types , objects and fluents
T = UserType ("Tile")
t0 = Object ("t0", T) ... t8 = Object ("t8", T)
g = Fluent ("grid", ArrayType (3, ArrayType (3,T)))
p. add_fluent (g, default_initial_value =t0)
Specifying the initial and goal state
p. set_initial_value (g, [[t1 ,t2 ,t3],[t5 ,t6 ,t8],[t4 ,t7 ,t0]])
p. add_goal (g, [[t1 ,t2 ,t3],[t4 ,t0 ,t5],[t6 ,t7 ,t8]])

Listing 1 Defining the 8-Puzzle problem of Figure 2.
Figure 2 8-Puzzle

instance example.

(: action move - right
: parameters (?r ?c ?nc - idx ?t - tile)
: precondition (and (grid ?t ?r ?c)

(next ?nc ?c) (empty ?r ?nc))
: effect (and

(not(empty ?r ?nc)) (grid ?t ?r ?nc)
(not(grid ?t ?r ?c)) (empty ?r ?c)))

Listing 2 8-Puzzle move-right in PDDL.

mr = InstantaneousAction ("move - right ",
r= IntType (0 ,2) , c= IntType (0 ,1))

mr. add_precondition (Equals (grid[r][c+1] , t0))
mr. add_effect (grid[r][c+1] , grid[r][c])
mr. add_effect (grid[r][c], t0)

Listing 3 8-Puzzle move-right using Integer
Parameters.

The n-Puzzle (see Figure 2) is a classic AI problem where tiles must be moved into123

an adjacent empty cell to reach a goal configuration. Without arrays, modelling requires124

explicitly defining all adjacency relations, resulting in a long and error-prone model. Arrays125

make these relations implicit: the grid is modelled as a 2D fluent (Listing 1), and initial and126

goal states can be compactly expressed as 2D arrays.127

Integer-Type Parameters in Actions PDDL only supports object parameters [5],128

so arrays are often modelled using fluents indexed by coordinate objects. For example, the129

8-Puzzle move_right action must include positions and values as parameters (Listing 2). To130

simplify this, we introduce bounded integer parameters in actions, allowing natural indexing131

and arithmetic over arrays. For example, the move-right action in Listing 3 uses a bounded132

column parameter IntType(0,1) to restrict moves within valid columns. This leads to133

simpler and more intuitive action definitions.134

Count Expression To support cardinality constraints, we introduce the Count expression,135

which returns how many of its Boolean arguments are satisfied. It can be written as Count(a,136

b, c) or Count([a, b, c]), where each argument is a Boolean expression. We illustrate137

the use of this expression with Plotting, where the goal is to reduce the number of blocks in138

the grid to a target number or fewer. The avatar shoots blocks into the grid. If the shot139

block hits one of the same pattern, that block is removed. State changes are complex because140

multiple blocks may be removed in a single shot and gravity affects the blocks in the grid.141

In our model, the fluent blocks is a 2D array of Colour values indexed by integer row and142

column. The condition in Listing 4 ensures that the number of non-empty cells (those not143

equal to N) does not exceed a threshold (e.g., 2). Python list comprehensions provide a144

concise way to construct the Boolean expressions counted in this condition.145

Integer Range Variables With the introduction of arrays and integer parameters in146

actions, it becomes natural to express properties over collections using iteration, particularly147

in quantifiers for preconditions and effects. However, in classical planning, quantifiers such as148

forall and exists are restricted to user-defined types, so variables can only range over declared149

objects. This restriction makes it impossible to directly quantify over a sequence of integers,150

requiring manual unrolling or Python checks, which is both cumbersome and error-prone.151

C. Davesa, J. Espasa, I. Miguel, and M. Villaret 5

Figure 3 2x3 Plotting instance.

plotting . add_goal (LE(Count ([Not(Equals (blocks [i][j], N))
for i in range (2) for j in range (3)]) , 2))

Listing 4 Plotting goal condition with Count.

To address this limitation, we introduce the RangeVariable type to represent a bounded152

integer variable, defined by a lower and upper bound, which can be constants or parameters.153

5 Compilers154

This section presents six compilers that translate high-level constructs into low-level repres-155

entations compatible with standard languages like PDDL. While the output may be verbose,156

it reveals the complexity hidden in high-level models—complexity that would be tedious157

to encode manually. Some constructs offer multiple compilation options, supporting the158

exploration of alternative models from a single specification. All compilers follow the UP159

library structure to ensure consistency and tool compatibility.160

To correctly apply the new compilers they must follow a specific order. Figure 4 illustrates161

the required sequence based on the features present in the problem, guiding the transformation162

towards a representation compatible with classical planners. Since planner capabilities vary,163

not all features need to be removed for every problem–planner combination.164

IntParameterActionsRemover (IPAR) Handles actions with integer parameters by165

converting them into a set of (partially) grounded actions, one per each possible combination166

of parameter values within their bounds. For each such action, the compiler generates167

new versions in which the integer parameters are replaced by specific values within the168

preconditions and effects. During this process, arithmetic expressions involving integer169

parameters are also simplified.This compiler also processes RangeVariable constructs by170

expanding integer quantifiers into equivalent logical expressions.171

ArraysRemover (AR) Arrays are eliminated by replacing each element with a separate172

fluent or value. In the 8-Puzzle example, the original multidimensional array fluent grid173

becomes nine new fluents, one for each cell in the 3×3 grid. All array accesses in the problem174

are then replaced by references to the corresponding fluent.175

ArraysLogarithmicRemover (ALR) Converts multidimensional integer array fluents176

into a Boolean encoding compatible with classical planners. For each bounded integer fluent177

with range [0, n], it introduces ⌈log2(n+1)⌉ Boolean fluents, representing the bits of its binary178

encoding. Each array position becomes an object of a new Position user type, used as a179

parameter in the resulting Boolean fluents. For example, in the 8-Puzzle (Listing 1), using180

IntType(0,8) encodes each tile with 4 bits, generating fluents g_b0–g_b3 and Position181

objects like p_0_0, . . . , p_2_2. A tile value of 1 at (0, 0) is thus encoded as 0001.182

CountRemover (CR) Transforms the cardinality constraints involving Count expres-183

sions by replacing them with an equivalent disjunction that explicitly enumerates all satisfying184

assignments. Although the size of the resulting formula grows combinatorially with the185

number of variables involved, this approach guarantees compatibility with classical planners.186

CountIntRemover (CIR) Since our encoding now supports numeric fluents, we preserve187

cardinality constraints by counting how many Boolean expressions in a Count evaluate to188

true. For each such expression, the compiler creates an integer fluent set to 1 if the expression189

holds, and 0 otherwise. Repeated subexpressions reuse the same fluent to avoid redundancy.190

The original Count is replaced by a Plus over these integer fluents. Their initial values reflect191

the evaluation of the corresponding expressions in the initial state. When any fluent involved192

6 Modelling Multi-dimensional Arrays in Unified Planning

in a Count changes, the compiler adds conditional effects to update the associated integer193

fluent accordingly, maintaining consistency.194

IntegersRemover (IR) Replaces integer values with objects of a new user type Number,195

assuming a finite range. Integer values in preconditions and effects are replaced by these196

objects, and arithmetic operations are converted into Boolean predicates, generated only197

as needed and precomputed over all combinations. Increase and Decrease are handled198

via conditional effects that assign the correct next value. Finally, the UserTypesFluen-199

tRemover (UFR) compiler converts user-type fluents into Boolean formulas for classical200

planner compatibility.201

Figure 4 Compiler sequence
by features. Boxes - blue: fea-
tures; grey: compilers; dashed:
existing components. Arrows -
grey: order; black: applicable
compilers; dashed: introduced.

6 Experiments202

We evaluate our new UP-extended implementation by encoding and solving six domains:203

15-Puzzle, Pancake Sorting, Plotting, Rush Hour, Sokoban, and Puzznic alongside existing204

handcrafted PDDL models. All the models employing our extensions are more natural and205

concise than their low-level PDDL equivalents, which tend to be long and prone to error.206

We applied several compilation strategies to each of our models to obtain different compiled207

versions to compare with the handcrafted PDDL models (Table 2). This illustrates the ability208

of our system to explore different low-level models from a single high-level representation,209

and indeed we will see that different strategies perform better depending on the problem. To210

ensure fair comparison, we converted the handcrafted models into UP’s internal representation211

using its PDDL parser, so that all variants were processed uniformly and submitted to the212

planners in the same format.213

We analysed the impact of our UP extensions by comparing them with handcrafted PDDL214

versions. To ensure consistency and demonstrate compatibility with standard planning tools,215

we used the UP-integrated planners: Fast Downward [12] (v24.06) and SymK [19] (v1.3.1),216

and ENHSP [17] (v20) for numeric problems 1. All planners were used with their default217

configurations and a timeout of 30 minutes. We ran three operation modes: OneShot to218

obtain an initial solution, Anytime for the best solution found within the time limit; and219

Optimal, to guarantee optimality if found in time. Since Fast Downward’s default heuristic220

within UP in optimal mode does not support conditional effects, we applied UP’s conditional221

effects compiler when required. All experiments were run on a 20-node cluster with Intel(R)222

Xeon(R) E-2234 CPUs @ 3.60 GHz with 16GB of RAM. Table 1 shows the percentage of223

solved instances per problem, compilation, and mode.224

15-Puzzle We have introduced the n-Puzzle as a well-known running example. Due to225

the negligible solving times of the 8-Puzzle, we focused our evaluation on the more challenging226

15-Puzzle. We used the 100 instances from the ICAPS 2015 benchmark repository [13], and227

the handcrafted model available there, which serves as our baseline for comparison. We228

1 Other available engines were excluded due to lack of support for required features or installation issues.

C. Davesa, J. Espasa, I. Miguel, and M. Villaret 7

OneShot Anytime Optimal
F S E F S E F S E

15
-P

uz
zl

e handcrafted 100 32 x 100 32 x 20 32 x
up 100 0 x 100 0 x 0 0 x
ut-integers 100 0 x 100 0 x 0 0 x
logarithmic 100 38 x 100 41 x 0 37 x
integers x x 100 x x 100 x x 0

pa
nc

ak
e handcrafted 40 20 x 40 20 x 0 20 x

up 84 40 x 84 40 x 0 40 x
ut-integers 84 40 x 84 40 x 0 40 x
logarithmic 50 42 x 42 48 x 0 42 x
integers x x 50 x x 50 x x 40

pl
ot

ti
ng handcrafted 43 11 x 43 11 x 0 11 x

count 72 37 x 72 36 x 0 37 x
count-int 68 24 x 68 24 x 0 24 x
count-int-num x x 97 x x 97 0 x 91

pz
n handcrafted 5 33 x 5 31 x 0 0 x

up 3 8 x 3 10 x 0 0 x

rh

handcrafted 100 100 x 100 100 x 100 100 x
up 100 100 x 100 100 x 100 100 x

so
k handcrafted 95 80 x 95 75 x 18 80 x

up 90 95 x 90 95 x 18 95 x

Table 1 Percentage of instances solved for problem-
compilation versions and solving methods, rounded to
the nearest integer. An "x" indicates that the specific
compilation-solving configuration was not tested. The
solvers are denoted as follows: ‘F’ = Fast Downward,
‘S’ = SymK, ‘E’ = ENHSP.

Compilation
Strategies Compilers Sequence

up IPAR, AR, UFR

logarithmic IPAR, ALR

ut-integers IPAR, AR, IR, UFR

count IPAR, AR, CR, UFR

count-int IPAR, AR, CIR, IR, UFR

count-int-num IPAR, AR, CIR, UFR

integers IPAR, AR

Table 2 Compilation strategies with
their compilers application sequence. All
strategies are compatible with classical
planners, except count-int-num and in-
tegers, which preserve numeric fluents
and require a numeric planner.

experimented with two versions of our UP-extended model: a numeric version, where tile229

values are represented as integers, and a non-numeric version, where tiles are represented230

as user-types objects. From the numeric model, we derived several compilation strategies:231

integers, logarithmic, and ut-integers, while the non-numeric model led to the up version.232

Plotting [3] was used as a running example, with its goal expression using our extension233

Count. As this can be compiled in multiple ways, we evaluated three strategies: count,234

count-int, and count-int-num. We compared our UP-extended models with a manually235

created one [3]. The original repository includes several groups of instances, where each group236

varies only by colour assignments, with size and structure consistent across instances. We237

selected all 87 instances from the first group, ensuring sufficient variety. During evaluation,238

we found and corrected several bugs in the handcrafted model that produced incorrect239

plans—highlighting the challenges of modelling complex problems manually in PDDL.240

Sokoban is a puzzle game in which an agent pushes boxes onto target locations in a241

grid-based warehouse. The main challenge is to avoid pushing boxes into positions from242

which they cannot be moved, requiring careful planning. For the handcrafted model, we used243

the 39 instances and domain available in the IPC 2011 benchmark [15].244

Rush Hour is a sliding block puzzle played on a 6 × 6 grid, where blocks represent245

vehicles stuck in a traffic jam. The goal is to move the red car to the exit located on the246

right edge of the grid. Vehicle movements are constrained: they can only move forward or247

backwards and cannot cross over other vehicles. For our experiments, we selected the 100248

instances with the largest minimum plan lengths from Fogleman’s database [4]. We used the249

handcrafted PDDL model provided in the GitHub repository by Hajdini [10].250

Puzznic is a tile matching puzzle game in which the player must move blocks within a251

grid so that identical blocks touch and disappear, following gravity constraints. Solving each252

8 Modelling Multi-dimensional Arrays in Unified Planning

Pancake Sorting [6] in-
volves ordering a stack of
pancakes so that the smal-
lest is on top and the largest
at the bottom. The only
allowed operation is to flip
the top k pancakes, making
the problem non-trivial. As
no PDDL model was avail-
able, we created one and
compared it with our UP-
based model using the same
compilation strategies as for
the 15-Puzzle. To ensure di-
versity and scalability, we
tested 10 random instances
for sizes 5 to 25.

0 10 20 30 40
Instances Sorted by Total Time

100

101

102

To
ta

l T
im

e
(s

ec
on

ds
, l

og
10

 sc
al

e)

handcrafted
integers
logarithmic
up
ut-integers
Fast-Downward
SymK
ENHSP

Figure 5 Pancake Problem: Total Time by Compilation and
Solving (OneShot). Colours indicate different compilation versions,
while line styles and markers distinguish solvers.

level requires planning a sequence of moves to avoid blocking necessary paths or isolating253

tiles. The complex handcrafted model [2] includes derived predicates and axioms, so to create254

an extended model incorporating them, we merged our branch with the one developed by255

Speck, which handles these features. The 39 instances used for our experiments were taken256

from the Puzznic benchmark [2].257

Overall analysis: In 15-Puzzle, Pancake, and Plotting, our models solved more instances258

and achieved better or comparable plan quality, especially in the Anytime and Optimal259

modes. The logarithmic encoding was particularly effective in 15-Puzzle, allowing SymK260

to outperform handcrafted baselines. In Sokoban and Rush Hour, performance was similar261

across variants, showing our approach generalises well. Rush Hour’s simplicity, however,262

limits performance differentiation. Puzznic was the only domain where our compilations263

underperformed, with handcrafted SymK consistently superior across modes.264

7 Conclusions & Future Work265

Our work is motivated by the need to improve modelling facilities for AI Planning, particularly266

for common structures like grids, which are hard to model in PDDL when index-based267

operations are involved. We have introduced a set of extensions to the Unified Planning268

library that support high-level modelling features, enabling natural formulations across a269

range of domains with array-like structures. These features allow automatic exploration of270

multiple low-level reformulations from a single high-level model. While each of the rewrites271

in isolation could be manually implemented by a user, combining various transformations272

manually is laborious and error-prone. Furthermore, as planners generally support different273

subsets of features, users would typically need to create specific models for each planner274

they wished to test. Our experiments show that the compiled models are competitive275

with, and often outperform, handcrafted alternatives. Future work includes exploring new276

compilation pathways, automating planner and rewrite selection, and identifying additional277

useful modelling patterns.278

C. Davesa, J. Espasa, I. Miguel, and M. Villaret 9

References279

1 Mojtaba Elahi and Jussi Rintanen. Planning with complex data types in PDDL. CoRR,280

abs/2212.14462, 2022.281

2 Joan Espasa, Ian P. Gent, Ian Miguel, Peter Nightingale, András Z. Salamon, and Mateu282

Villaret. Cross-paradigm modelling: A study of puzznic. In 2024 IEEE 36th International283

Conference on Tools with Artificial Intelligence (ICTAI), pages 89–95, 2024. doi:10.1109/284

ICTAI62512.2024.00021.285

3 Joan Espasa, Ian Miguel, Peter Nightingale, András Z. Salamon, and Mateu Villaret. Plotting: a286

case study in lifted planning with constraints. Constraints An Int. J., 29(1-2):40–79, 2024. URL:287

https://doi.org/10.1007/s10601-024-09370-x, doi:10.1007/S10601-024-09370-X.288

4 Michael Fogleman. Solving rush hour, the puzzle. July 2018. URL: https://www.289

michaelfogleman.com/rush/.290

5 Maria Fox and Derek Long. PDDL2.1: an extension to PDDL for expressing temporal planning291

domains. J. Artif. Intell. Res., 20:61–124, 2003. URL: https://doi.org/10.1613/jair.1129,292

doi:10.1613/JAIR.1129.293

6 William H. Gates and Christos H. Papadimitriou. Bounds for sorting by prefix reversal.294

Discrete Mathematics, 27(1):47–57, 1979. doi:10.1016/0012-365X(79)90068-2.295

7 Hector Geffner. Functional strips: A more flexible language for planning and problem solving.296

In Logic-Based Artificial Intelligence, volume 597 of The Springer International Series in297

Engineering and Computer Science. Springer, 2000.298

8 Hector Geffner. PDDL 2.1: Representation vs. computation. J. Artif. Intell. Res., 20:139–144,299

2003. URL: https://doi.org/10.1613/jair.1995, doi:10.1613/JAIR.1995.300

9 Alfonso Emilio Gerevini. An introduction to the planning domain definition language (PDDL):301

book review. Artif. Intell., 280:103221, 2020.302

10 GitHub. Rush Hour - PDDL. March 2019. URL: https://github.com/ehajdini/AI/blob/303

master/RushHour_PDDL/domain1.pddl.304

11 Peter Gregory, Derek Long, Maria Fox, and J. Christopher Beck. Planning modulo theories:305

Extending the planning paradigm. In 22nd ICAPS, 2012.306

12 Malte Helmert. The fast downward planning system. J. Artif. Intell. Res., 26:191–246, 2006.307

URL: https://doi.org/10.1613/jair.1705, doi:10.1613/JAIR.1705.308

13 ICAPS 2015. 15-puzzle domain from the ICAPS 2015 Benchmark Suite, 2015. URL: https:309

//github.com/icaps15-CAP/sigaps-domains/tree/master/15puzzle.310

14 Andrea Micheli, Arthur Bit-Monnot, Gabriele Röger, Enrico Scala, Alessandro Valentini, Luca311

Framba, Alberto Rovetta, Alessandro Trapasso, Luigi Bonassi, Alfonso Emilio Gerevini, Luca312

Iocchi, Felix Ingrand, Uwe Köckemann, Fabio Patrizi, Alessandro Saetti, Ivan Serina, and313

Sebastian Stock. Unified planning: Modeling, manipulating and solving ai planning problems314

in python. SoftwareX, 29:102012, 2025. doi:10.1016/j.softx.2024.102012.315

15 Potassco Team. Sokoban domain from the IPC 2011 Benchmark Suite, 2011. URL:316

https://github.com/potassco/pddl-instances/blob/master/ipc-2011/domains/317

sokoban-sequential-satisficing/instances/instance-1.pddl.318

16 Jussi Rintanen. Impact of modeling languages on the theory and practice in planning research.319

In 29th AAAI, pages 4052–4056, 2015.320

17 Enrico Scala, Patrik Haslum, and Sylvie Thiébaux. Heuristics for numeric planning via321

subgoaling. In Subbarao Kambhampati, editor, Proceedings of the Twenty-Fifth International322

Joint Conference on Artificial Intelligence, IJCAI 2016, New York, NY, USA, 9-15 July 2016,323

pages 3228–3234. IJCAI/AAAI Press, 2016. URL: http://www.ijcai.org/Abstract/16/457.324

18 David E Smith, Jeremy Frank, and William Cushing. The anml language. In The ICAPS-08325

Workshop on Knowledge Engineering for Planning and Scheduling (KEPS), volume 31, 2008.326

19 David Speck, Robert Mattmüller, and Bernhard Nebel. Symbolic top-k planning. In The Thirty-327

Fourth AAAI Conference on Artificial Intelligence, AAAI, pages 9967–9974. AAAI Press, 2020.328

URL: https://doi.org/10.1609/aaai.v34i06.6552, doi:10.1609/AAAI.V34I06.6552.329

https://doi.org/10.1109/ICTAI62512.2024.00021
https://doi.org/10.1109/ICTAI62512.2024.00021
https://doi.org/10.1109/ICTAI62512.2024.00021
https://doi.org/10.1007/s10601-024-09370-x
https://doi.org/10.1007/S10601-024-09370-X
https://www.michaelfogleman.com/rush/
https://www.michaelfogleman.com/rush/
https://www.michaelfogleman.com/rush/
https://doi.org/10.1613/jair.1129
https://doi.org/10.1613/JAIR.1129
https://doi.org/10.1016/0012-365X(79)90068-2
https://doi.org/10.1613/jair.1995
https://doi.org/10.1613/JAIR.1995
https://github.com/ehajdini/AI/blob/master/RushHour_PDDL/domain1.pddl
https://github.com/ehajdini/AI/blob/master/RushHour_PDDL/domain1.pddl
https://github.com/ehajdini/AI/blob/master/RushHour_PDDL/domain1.pddl
https://doi.org/10.1613/jair.1705
https://doi.org/10.1613/JAIR.1705
https://github.com/icaps15-CAP/sigaps-domains/tree/master/15puzzle
https://github.com/icaps15-CAP/sigaps-domains/tree/master/15puzzle
https://github.com/icaps15-CAP/sigaps-domains/tree/master/15puzzle
https://doi.org/10.1016/j.softx.2024.102012
https://github.com/potassco/pddl-instances/blob/master/ipc-2011/domains/sokoban-sequential-satisficing/instances/instance-1.pddl
https://github.com/potassco/pddl-instances/blob/master/ipc-2011/domains/sokoban-sequential-satisficing/instances/instance-1.pddl
https://github.com/potassco/pddl-instances/blob/master/ipc-2011/domains/sokoban-sequential-satisficing/instances/instance-1.pddl
http://www.ijcai.org/Abstract/16/457
https://doi.org/10.1609/aaai.v34i06.6552
https://doi.org/10.1609/AAAI.V34I06.6552

	1 Introduction
	2 Background and Related Work
	3 The Unified Planning Framework Pipeline
	4 The Proposed UP Extensions
	5 Compilers
	6 Experiments
	7 Conclusions & Future Work

