10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

Proof logging the Generalized Totalizer Encoding

Carlos Cantero 20
KU Leuven, Belgium

Bart Bogaerts S 4& ®
KU Leuven, Belgium
Vrije Universiteit Brussel, Belgium

Dieter Vandesande &6
KU Leuven, Belgium
Vrije Universiteit Brussel, Belgium

—— Abstract

There are many different pseudo-Boolean encodings, including the Generalized Totalizer Encoding,
and various proof logging techniques have been developed for some of them. Those techniques
are able to certify certain correctness properties in the context of, for example, pseudo-Boolean
solving and MaxSAT solving. In this work, we present a cutting planes derivation of the original
pseudo-Boolean constraint from the clauses generalized by its Generalized Totalizer Encoding;
together with a previous proof, this derivation can be used to certify via proof logging the one-to-one
correspondence of the models of a constraint and its Generalized Totalizer Encoding, a crucial
correctness property for pseudo-Boolean model counting. We also show that the traditional definition
of the Generalized Totalizer Encoding is incomplete in this sense, and offer a simple way to fix it.

2012 ACM Subject Classification Theory of computation — Constraint and logic programming;
Mathematics of computing — Combinatorial optimization

Keywords and phrases proof logging, pseudo-boolean, totalizer, generalized totalizer, encoding,
cutting planes, reification, combinatorial optimization, pseudo-boolean solving

Digital Object Identifier 10.4230/LIPIcs.DP.2025.

1 Introduction

During the last few decades, combinatorial optimization techniques have quickly improved,
and we are able to solve a higher number of problems quicker and quicker every year. While
this is generally a good thing, it also brings with it important technical difficulties, like safety
concerns: we may be content with the low percentage of failure that plain testing allows
for most algorithms, but for some sensitive cases, like scheduling of organ transplants or
automated public transport, we would like to achieve zero error.

This is possible through formal verification, a series of techniques that ensure the cor-
rectness of a system with respect with a mathematical specification, proving a number of
conditions are satisfied, and, in particular, allowing to prove that an algorithm will never fail.
But traditional formal verification techniques, like model checking, are slow and complicated
processes and can hardly keep up with the fast evolution of combinatorial optimization
algorithms: an alternative is proof logging, a much more suitable verification technique for
the particularities of this field.

Proof logging consists in making algorithms output a small proof of the correctness of a
particular execution, which can later be checked by a much simpler proof checker, fit to be
formally verified. Proof logging an algorithm does not guarantee the general correctness of
the algorithm, but it does ensure the correctness of every execution accepted by the proof
checker. This offers both weaker and stronger guarantees with respect to traditional formal
verification: weaker because they are less general, and stronger because they also certify
every execution is free from isolated problems, like bit-flips due to gamma rays. Proof logging

© Carlos Cantero, Bart Bogaerts and Dieter Vandesande;

licensed under Creative Commons License CC-BY 4.0
CP/SAT Doctoral Program 2025.
Editors: Mun See Chang and Katalin Fazekas; Article No.; pp.:1-:11
Leibniz International Proceedings in Informatics
Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:carlos.cantero@kuleuven.be
https://orcid.org/0009-0009-1330-1383
mailto:bart.bogaerts@kuleuven.be
https://www.bartbogaerts.eu/
https://orcid.org/0000-0003-3460-4251
mailto:dieter.vandesande@kuleuven.be
https://orcid.org/0000-0002-8150-3202
https://doi.org/10.4230/LIPIcs.DP.2025.
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

XX:2

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

Proof logging the Generalized Totalizer Encoding

also offers a great opportunity for auditability, providing useful debugging information when
something does go wrong.

This is why we can observe an increased interest in proof logging techniques in the last two
decades, as exemplified by the mandatory introduction of proof logging for SAT solvers in the
main track of the SAT competition. Another discipline that can benefit from proof logging is
the field of pseudo-Boolean-to-CNF encodings: the translation of pseudo-Boolean constraints
into CNF formulas. A possible use of that proof logging is the complete certification of
pseudo-Boolean solvers, since a number of them work by translating the input into CNF and
then applying a SAT solver to the resulting clauses: at the moment, only the proof logging
of the second part of this process has been extensively adopted.

There are many different PB-to-CNF encodings, one of which is the Generalized Totalizer
Encoding (GTE). First introduced for cardinality constraints (pseudo-Boolean constraints
in which every weight is equal to one) in [1], it was extended to general pseudo-Boolean
constraints in [4]. The task of proof logging a PB-to-CNF encoding has two directions:
constraint to clauses, where we prove that every model (satisfying assignment) of the original
pseudo-Boolean constraint is also a model of the resulting encoding, and clauses to constraint,
in which we prove the converse.! The direction constraint to clauses of the GTE was certified
in [6], and it allows us to produce proofs of unsatisfiability, which is why it has been used to
certify the iterative MaxSAT solver QMaxSAT [7]. A proof of the converse direction would
enable us to certify techniques that need to preserve one-to-one correspondence of models
between clauses and constraint, like pseudo-Boolean model counting.

Our contributions

In this paper, we present a proof of the clauses to constraint direction, to the best of our
knowledge for the first time. Following the lead of [6], we will show that direction via a
cutting planes derivation, in such a way that the proof can be readily transformed to a proof
logging implementation in VeriPB style.

With this proof, we confirm there is a one-to-one correspondence of models between the
GTE encoding and the original pseudo-Boolean constraint. Additionally, we show that the
traditional definition of the GTE based in [4] is incomplete, in the sense that it does not
preserve one-to-one correspondence, and we present a simple extension to the definition that
makes it complete.

Let us overview the structure of the paper. In Section 2, we introduce all the necessary
definitions: we explain what a pseudo-Boolean constraint is, we define the GTE, we explain
how a cutting planes derivation works and we outline our proof logging method; in Section 3,
we show why the traditional definition of the GTE is incomplete by means of a counterexample;
finally, in Section 4, we present our proof of the clauses to constraint direction and we explain
what a proof logging implementation certifying one-to-one correspondence would look like.

L More precisely, since in general the PB-to-CNF encodings introduce new variables, what we prove in the
clauses to constraint direction is that every model of the encoding can be restricted to a model of the
original constraint, so that in the end, if we prove both directions, we obtain a one-to-one correspondence
of models rather than an equivalence.

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

C. Cantero, B. Bogaerts and D. Vandesande

2 Preliminaries

» Definition 1 (Pseudoboolean constraint). A pseudo-Boolean constraint is an inequality of
the form

n m
D wilitjux Y wh- U+ g,
i=1 i=1

where all w;, all Wi, j1 and jo are integers, l; and l; are literals (a boolean variable or the
negation of a boolean variable), and x € {<, >}.

» Definition 2 (Normalized form). A pseudo-Boolean constraint in normalized form has the
following structure:

n
> w3,
i=1

where all w; (the weights of the literals) are positive integers and j is a nonnegative integer.

Since every pseudo-Boolean constraint can be easily transformed into a normalized pseudo-
Boolean constraint (as detailed in [5]), from now on we will assume every constraint is in
normalized form. We presume the reader is familiar with Boolean logic and the deﬁnltlon of

CNF; note a clause \/ l; can be straightforwardly represented as a constraint: Z l; > 1.

Now, we will introduce our definition of the GTE. We begin by defining a binary—tree
structure and some auxiliary concepts that will aid us in the the actual definition.

» Definition 3 (Generalized totalizer tree). A generalized totalizer tree (GTT) T of a constraint
n

S w; - l; > j is a binary tree the leaves of which are the literals 1y, ..., 1, from the given
i=1

zonstmint.

» Definition 4 (leaves). Let T be a GTT. For every leaf 1 of a T we define leaves(l) = {i},

and for every internal node n of T we define leaves(n) = leaves(n;) U leaves(ns).

» Definition 5 (weight). Let T be a GTT and n be a node of T. Then, weight(n) represents
the sum of the weights of all leaves which are descendants of n. Formally, for every leafl = [;,
we define weight(l) = w;, where w; is the weight of the literal l; in the given constraint, and
for every internal node 1, we say weight(n) = weight(n;) + weight(ns).

» Definition 6 (sumweights). Let T be a GTT. For every node n of T, the sequence
sumweights(n) is intended to represent all possible combinations of weights of the leaves of 1)
in increasing order. Formally, for every leaf |, we define sumweights(l) = (weight(1)); for
every internal node n, we define sumweights(n) as the sequence of all the elements from the
following set in increasing order:

sumweights(n;) Usumweights(nz) U{w; + w2 : w1 € sumweights(n;) Awy € sumweights(nz)}.

Let us denote the i-th element of sumweights(n) by s, where the smallest index is i = 1. If
the context makes n clear, we sometimes say just s;. For every node n, we convene sj =0

— "
and S|sumwe1ghts(N+1 T S\sumweights(n)\ + 1.

» Definition 7 (Counting variables). Let T be a GTT. We introduce a variable ye, for every
node n of T and every 1 < j < |sumweights(n)|, with the intended meaning that the sum
of the true weighted literals from leaves(n) adds up to at least s;. We convene y! =1 and

_ [
y|17sumweights(n)|+l =0, and ys, =1 for every leaf l.

XX:3

DP 2025

XX:4 Proof logging the Generalized Totalizer Encoding

o1 » Definition 8 (Generalized totalizer encoding). Let T be a GTT. For every internal node n
1w of T, its GTE is the set of the clauses

Ci(ab.c) =5 VI Vi,
123 —
Ci(a,bye) =yl Vy VvVl
e for all values of 0 < a < |Sumweights(771)\ and 0 < b < |sumweights(nz)] and 0 < ¢ <
s [sumweights(n)| such that s + s> = s, and of the clauses

o CJ() = vl vyl

w for every 1 < j < |sumweights(n)|. We have CY(a,b,c) represents yI* Ayl> — yI , while
s CF(a,b,c) represents y L NUEL = Yl L, meaning that if the leaves of m add up to at
19 most s, and the leaves of o add up to at most sy, then the leaves of n add up to at most s..
CJ(j) represents yd =yl ., meaning that if the sum of the true leaves of 7 adds up to at
w1 least sj, then it must add to at least s;_1.

132 The GTE of T is the union of the GTEs of every internal node of T. Finally, let

n

133 Z w; - l; > j be a constraint, let T be the its GTT, let 1.y be the root node of T and let

-
@
S

134 () < k < |sumweights(ny)| be the least index such that s** > j (if j > s then

|sumwc1ghts(nrt)\

s simply k = |sumweights(ny)| + 1). Then, the GTE of Z wj - l; > j is the union of the GTE
i=1
s of T and {yg}‘:}

137 Now, we present the basics of the cutting planes proof system (introduced in [3]), which
s our proof will be based on. This proof system reasons with pseudo-Boolean constraints and
130 is implicationally complete (meaning that given a set of constraints as input, it can derive
1o any constraint that is implied by them), making it perfect for our proof logging purposes.
w1 This is why VeriPB (see [2]), the leading tool used for pseudo-Boolean proof logging, is based
12 on this proof system. The main rules of the cutting planes proof system are the following:

1z > Definition 9 (Main rules).

. . m .
Yowi-li > g STwl -l > o
=1

Literal Axiom =
e 120 . i Addition Rule
>w l+Zw l; > j1+ jo
=1
n n
Zwl I; >4 _sz l;>7
1 —~ =1 Multiplication Rule — =1 Division Rule
> (crwi)-lizcj > fwife] - 1; > [j/c]
i=1 i=1
146 The previous rules are enough to achieve implicational completeness, but we also include
w7 the following two rules to allow for shorter derivations:
us > Definition 10 (Additional rules).
n n
sz"liZj wol+ Y wili >
" — = Saturation Rule — = Weakening Rule

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

C. Cantero, B. Bogaerts and D. Vandesande

We say there is a cutting planes proof of constraint C' from a set of constraints S when
there is a sequence of cutting planes rules that takes as input the constraints from .S and
ends with C.

Then, our objective is to derive the original constraint from its GTE via a cutting
planes proof. But we will prove something stronger: we will show that from the GTE of a
constraint, we can derive by cutting planes all the reification constraints of the counting
variables associated with the given constraint, including the constraint itself. The reification
constraints of a counting variable yd assert its intended meaning:

Y Z weight(l) - 1 > s;. Formally,
I€leaves(n)

» Definition 11 (Reification constraints). For a noden of a GTT and 0 < j < |sumweights(n)|,
the reification constraints of yd are:

WD) =5 gl + 3 weight(l) -1 > s;
l€leaves(n)

Croir(yl,) = (weight(n) —s; +1) -yl + > weight(l) - [> weight(n) — s; + 1.
I€leaves(n)
The reification constraints are the touchstones we use when proof logging the GTE: if we can
show that there is a one-to-one correspondence of models between reification constraints and
their associated GTE, then we are sure that the counting variables of that GTE are actually
expressing what we want them to express (including the counting variable which enforces the
constraint we are encoding). A cutting planes derivation of reification constraints to GTE
was given in [6],2 and in this paper we will give a derivation of the converse direction.

3 A counterexample

The use of the clauses of kind C¥ in the generalized totalizer encoding is not standard. The
traditional way to define the GTE, which is based on [4], introduces only clauses of kind
C} and C7.> We argue C7 clauses are necessary to achieve one-to-one correspondence of
the GTE and the reification constraints, as shown by the following simple counterexample:
consider the constraint 2z1 + 3z > 3, and let T be its GTT. The only internal node 1 of T'
introduces the variables yJ, y7 and y., and the traditional GTE of T’ (without Cy clauses)
consists of the following clauses:

O?(270,2) = i:l\/yg O?(O,3,3) = :fg\/yg C?(2,3,5) = il\/fg\/yg
Cg(0,0,0) = 1:1\/932\/172 03(27072) = ZEQ\/gg 03(0,3,3) = I \/gg

Two assignments that satisfy every clause while failing to satisfy the reification constraints of
all the counting variables are {z1 =1, 22 =0, yJ =1, y4 =0, y# = 1}, which fails to satisfy
Crle(yd), and {z1 =0, z2 =1, yg =0, y7 =1, yJ = 0}, which fails to satisfy C{;(y3).

reif
A convenient way to fix this is to introduce the clauses of kind CY. Those new clauses
are easily derivable from the reification constraints (we get C3(j) by adding C;(yl.) to

Creit (Yl _,), weakening and saturation), so the proof in [6], which uses the traditional version

of the GTE, is easily generalizable to this new definition.

2 Actually, the proof there is restricted to cardinality constraints, but it can be immediately extended to
the general case.

3 Actually, the definition in [4] works with a different normalized form and only introduces clauses of kind
C7, but it can be easily extended with clauses of kind C3 following [1].

XX:5

DP 2025

XX:6

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

Proof logging the Generalized Totalizer Encoding

4 Proof logging

Now, we want to show a cutting planes derivation of GTE to reification constraints. To ease
the reading, let us introduce some notation: given an internal node 7,

L = > weight(l) -1 R" = > weight(l) -1 |L"| = weight(n;)

B l€leaves(n1) B B l€leaves(n2) B

L = > weight() -1 R" = > weight(l) -1 |R" = weight(ns),
l€leaves(ny) l€leaves(nz2)

where we drop the superscript when 7 is clear by context.

To show GTE to reification constraints, we will prove two weaker propositions. The first
proposition will entail GTE to CJ;, and the second one, proven in a similar way, will entail
GTE to C ;. But there is a complication: due to there potentially being ‘gaps’ between
the indexes of the counting variables, for the first proposition we will need a strengthened

. - . . < .
version of CJ;, which we will call C3, ;;, meaning

Yl Z weight(l) -1 > sj_1 + 1. Formally,
l€leaves(n)

» Definition 12 (Strengthened reification constraint).

streit (V) = (weight(n) — sj-1) -yl + Z weight (1) - I > weight(n) — s;_1.
leleaves(n)

For the case j =0, we convene s;_1 = —1.
Let us begin with the first proposition, before which we will prove two auxiliary lemmas:

» Lemma 13. Let T be a GTT of a given constraint, let n be an internal node of T, let
1 < j < |sumweights(n)|, let b € {1,2} and let v =1+ (b%2). Given:
1. Clreir(yt) for 0 < n < [sumweights(n)| + 1,

streif

Clreis (W) for 0 < n < |sumweights(n2)] 4 1,

streif

the negated reification constraint ~Cg i+ (yl),

yd> > 1 for 0 < i < |sumweights ()| such that there exists 0 < k < |sumweights(n,)| so

m M < N
that s;° 4 + s;” < s;_4,

there is a cutting planes derivation of ylv > 1, for k the largest index such that st s <

ol

s

Jj—1-

Proof. Let b = 1 without loss of generality. Given —Cg,;¢(yZ,), which normalizes to
(ILI+ R = s]_y) gl + L+ R>|L| + |R[+ 1,

we can derive

L+R>s] +1 (1)
by weakening. Our assumption %! contradicts the left hand side of C3 i (yZ*), so we add
8 = 1) - (IL] = siy) to Cleis(yl}) to get

L> IL| = sy, (2)

meaning L < s7" . Together with our assumption L+ R > 5}7_1 this implies R > 3;‘]—1 —st, >

577, so we add (2) to (1) and weaken to get
R>sP 41, (3)

which is the right hand side of Cg.i(y2,,), to which we add (3) and saturate to get

streif

yl =1 <

219

220

221

222

223

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

C. Cantero, B. Bogaerts and D. Vandesande

» Lemma 14. Let T be a GTT of a given constraint, let n be an internal node of T, let
1 < j < |sumweights(n)|, let b € {1,2} and let v =1+ (b%2). Given:
the GTE of node n,
the negated reification constraint ~Cg . (yl),

P >1 for 0 < k < |sumweights(n,)| so that there exists 0 < i < [sumweights(n,)| for
which k — 1 is the largest index such that s]* + s | < 53-771,
there is a cutting planes derivation of yl* > 1, for i the least index for which k — 1 is the

largest index such that s}* 4 sjl" | < s1 .

W=

Proof. Let b = 2 without loss of generality. Given —Cg, (), which normalizes to
(L] +|R[= s]+1) -yl + L+ R > |L| +|R| + 1,
we can derive
7> 1 (4)

by weakening and saturation. We have s? < s* + 5% (otherwise, s7 > s{* + s]* > s7_; by
maximality of k& — 1, and there is an element of sumweights(r)) between s7/_; and s7), so let
J <1 < |sumweights(n)| be such that s]* + s> = s]. Then, we have CY (i, k,1), which we

add to our assumption yJ? > 1 to get
gl +yl = 1. ()

If [# j, we have a sequence of constraints yJ +y? >1... yd . Tyl =1, which we add
to (5) to get

Pyl > L (6)

And the second disjunct contradicts our assumption ¥ , so we just have to add (4) to (6) to
get y* > 1. <

» Proposition 15. Let T be a GTT of a given constraint, let j be an internal node of T' and
let 1 < j < |sumweights(n)|. Given:

1. the GTE of node n,

2. Ceis(yl) for 0 < i < |sumweights(n1)] + 1,

3. Clreir(y?) for 0 < i < |sumweights(nz)| + 1,

streif
we can prove Cs‘freif(y;’j) by contradiction using cutting planes.

Proof. We assume —~Cg;(y!) towards contradiction. As shown in the proof of Lemma 14,
from that assumption we can derive

gl > 1. (7)

Let 0 < a < [sumweights(n;)| and 0 < b < [sumweights(nz)| be such that s7* +s;* = s7. We
add C{(a,b,j) and (7), getting

o, ol = 1. (8)

We will show both disjuncts lead to contradiction, starting with the left one. If a = 0, we are
done; otherwise, 7 fulfills the assumptions of Lemma 13, so we apply* Lemmas 13 and 14

4 Technically, we apply a slightly modified version of those lemmas that ignores g, throughout the proof.

XX:7

DP 2025

XX:8

255

256

257

258

259

260

261

262

263

264
265
266
267

268

269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288

289

Proof logging the Generalized Totalizer Encoding

iteratively to (8). If s7 > S1|7s2umweights(n2)|’ we get

n _

y\:umweights(nz)\-l-l + yng > 1. (9)
after at most |[sumweights(n2)| — b iterations and an application of Lemma 13. Otherwise,
let b < ¢ < |sumweights(n2)| be the least index such that s > s7_: we get

v tyg =L (10)
after at most ¢ — b+ 1 iterations. The case for 72 is similar. <

The reasoning for the second proposition is symmetrical, albeit without the need of
strengthened reification; we relegate it to the appendix due to space constraints.

» Proposition 16. Let T be a GT'T of a given constraint, let n be an internal node of T and
let 1 < j < |sumweights(n)|. Given:

1. the GTE of node 7,

2. Cle(ydr) for 0 < i < |sumweights(n;)] + 1,

3. Che(y?) for 0 < i < |sumweights(n2)] + 1,

we can prove Cr;f(ygj) by contradiction using cutting planes.

Finally, we have everything we need to prove GTFE to reification constraints. To close the
article, let us show how that would be done by presenting a blueprint for an implementation
of the proof logging of one-to-one correspondence of the GTE in VeriPB-style: given a
constraint C,

1. Derive both reification constraints C ¢ (y) and C{;(y) for every counting variable y of

C by redundance-based strengthening.’
2. Derive the GTE of C' from the reification constraints by using the algorithm in [6] (suitably
extended to our definition of the GTE). This certifies reification constraints to GTE.

+—
streif

to-top fashion (starting with the leaf nodes and then choosing an unvisited node of at

3. Derive (y) for every counting variable y of C' by using Proposition 15 in a bottom-

least the same level in every iteration); we can do that because C5 ;(y}) is trivially
satisfied by every leaf node [, so that the hypotheses of Proposition 15 are satisfied at
every step.

4. Delete C.5 Let j be the coefficient of C, and let k be the least index such that s} > j:
then, C' can be derived by adding C ¢ (y2*) and y* > 1 - s/ and rewriting.

5. Delete C¥¢(y) for every counting variable y of C' (we can do that because C;(y) trivially
follows from C,.i¢(y))-

6. Delete C¢(y) and C%,.¢(y) for every counting variable y in a top-to-bottom fashion
(starting with the root node and then choosing an unvisited node of at most the same
level in every iteration) by using Propositions 15 and 16.” This and the last step certify

GTE to reification constraints.

wt

VeriPB allows to derive reification constraints ‘for free’ by using a rule called redundance-based strength-
ening.

VeriPB allows to delete a constraint D if there is a cutting-planes derivation of D from the rest of the
given constraints. This derivation can also be a proof by contradiction.

The reification constraints of yZ, for the cases where 7 is a leaf node or j € {0, |[sumweights(n)| 41} are
trivially derivable.

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

C. Cantero, B. Bogaerts and D. Vandesande XX:9

—— References

1 Olivier Bailleux and Yacine Boufkhad. Efficient CNF encoding of Boolean cardinality con-
straints. In Principles and Practice of Constraint Programming - CP 2008, 9th International
Conference, CP 2003, Kinsale, Ireland, September 29 - October 3, 2003, Proceedings, pages
108-122, 2003. doi:10.1007/978-3-540-45193-8_8.

2 Bart Bogaerts, Stephan Gocht, Ciaran McCreesh, and Jakob Nordstrom. Certified dominance
and symmetry breaking for combinatorial optimisation. J. Artif. Intell. Res., 77:1539—-1589,
2023. doi:10.1613/jair.1.14296.

3 William J. Cook, Collette R. Coullard, and Gyoérgy Turdn. On the complexity of cutting-plane
proofs. Discret. Appl. Math., 18(1):25-38, 1987. doi:10.1016/0166-218X(87)90039-4.

4 Saurabh Joshi, Ruben Martins, and Vasco M. Manquinho. Generalized totalizer encoding
for pseudo-Boolean constraints. In Principles and Practice of Constraint Programming - 21st
International Conference, CP 2015, Cork, Ireland, August 31 - September 4, 2015, Proceedings,
pages 200-209, 2015. doi:10.1007/978-3-319-23219-5_15.

5 Olivier Roussel and Vasco Manquinho. Pseudo-Boolean and cardinality constraints. In
Handbook of satisfiability, pages 1087-1129. I0S Press, 2021.

6 Dieter Vandesande. Towards certified MaxSAT solving: Certified MaxSAT solving with
SAT oracles and encodings of pseudo-Boolean constraints. Master’s thesis, Vrije Uni-
versiteit Brussel (VUB), 2023. URL: https://researchportal.vub.be/nl/studentTheses/
towards-certified-maxsat-solving.

7 Dieter Vandesande, Wolf De Wulf, and Bart Bogaerts. QMaxSATpb: A certified MaxSAT
solver. In Logic Programming and Nonmonotonic Reasoning - 16th International Conference,
LPNMR 2022, Genova, Italy, September 5-9, 2022, Proceedings, pages 429-442, 2022. doi:
10.1007/978-3-031-15707-3_33.

A Omitted proofs
As before, we first prove two auxiliary lemmas.

» Lemma 17. Let T be a GTT of a given constraint, let n be an internal node of T, let
1 < j < |sumweights(n)|, let b € {1,2} and let v =1+ (b%2). Given:

1. Cle(ym) for 0 < n < |sumweights(ny)| + 1,
Clie(y?) for 0 < n < [sumweights(ns)| + 1,
the negated reification constraint ~C ¢ (y),

> 1 for 0 < i < |sumweights(ny)| such that there exists 0 < k < |sumweights(n,)| so
that s}* + s;* > 5;7.

there is a cutling planes derivation of yl» > 1, for k the least index such that s+ sl > 5}7.

bwbn

Proof. Let b = 1 without loss of generality. Given —Cr_’eif(ygj), which normalizes to
s]-yl + L+ R>|L|+|R| +1,
we can derive

L+R>|LI+|R —s7+1 (11)

by weakening, meaning L + R < s

(yr >1) - st and C; (y2") to get

reif

. By CiZ¢(y2"), we have y implies L > s}, so we add

L> s, (12)

7

DP 2025

https://doi.org/10.1007/978-3-540-45193-8_8
https://doi.org/10.1613/jair.1.14296
https://doi.org/10.1016/0166-218X(87)90039-4
https://doi.org/10.1007/978-3-319-23219-5_15
https://researchportal.vub.be/nl/studentTheses/towards-certified-maxsat-solving
https://researchportal.vub.be/nl/studentTheses/towards-certified-maxsat-solving
https://researchportal.vub.be/nl/studentTheses/towards-certified-maxsat-solving
https://doi.org/10.1007/978-3-031-15707-3_33
https://doi.org/10.1007/978-3-031-15707-3_33
https://doi.org/10.1007/978-3-031-15707-3_33

XX:10

331

332
333

334

335
336

337

338
339
340
341
342
343
344

345
346
347
348
349

350

351

352

353
354

355

356
357

358

359
360

361

362
363

364

Proof logging the Generalized Totalizer Encoding

Together with our assumption L + R < s7, this implies R < s7 — 5] < s/, which is what
we get when we add (11) and (12) and weaken:

R>|R|—s}? + 1. (13)

But this contradicts the right hand side of C.J¢(y7?), so we add that reification constraint to
(13) and saturate, getting
g > 1. (14)

S =
<

» Lemma 18. Let T be a GTT of a given constraint, let n be an internal node of T, let

1 < j < |sumweights(n)|, let b € {1,2} and let v =1+ (b%2). Given:

1. the GTE of node n,

2. the negated reification constraint =C s (yl),

3. g > 1 for 0 < k < [sumweights(n,)| such that there evists 0 < i < |[sumweights(n)| for
which k is the least index such that s + s} > s;’,

there is a cutting planes derivation of yl' = > 1, for i the largest index for which k is the

least index such that s?” + SZ“ > 5;7

Proof. Let b = 2 without loss of generality. Given ﬂCr_’eif(y;’j), which normalizes to
sT-yl + L+ R>|L|+|R| +1,
we can derive

yd, =21 (15)

i 3 n m 2 3 n m M2 n
by weakening and saturation. We have s} _; > s]" +s/* | (otherwise, s7_; < s/ +5/2, <s]

by minimality of &, and there is an element of sumweights(n) between s7_; and s7), so let
0 <1< j—1besuch that s]* + s> | =s;. Then, we have CJ(i,k — 1,1), which we add to

our assumption yJ? > 1 to get

ydl,, +ud,, =1L (16)
If I+ 1 # j, we have a sequence of constraints gyl +yd =1...9)., +yl, =1 which we
add to (16) to get

gL > 1 (17)

And the second disjunct contradicts our assumption y , so we just have to add (15) to (17)
to get
yl_lﬂ > 1. (18)

<

» Proposition 16. Let T be a GT'T of a given constraint, let n be an internal node of T and
let 1 < j < |sumweights(n)|. Given:

1. the GTE of node n,

2. Cle(ydr) for 0 < i < |sumweights(n;)] + 1,

3. C2(y??) for 0 <i < [sumweights(no)] + 1,

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

C. Cantero, B. Bogaerts and D. Vandesande

we can prove ;)if(y;’j) by contradiction using cutting planes.

Proof. We assume —CJ(y!) towards contradiction. As shown in the proof of Lemma 18,
from that assumption we can derive

ys > 1. (19)

Let 0 < a < [sumweights(n;)| and 0 < b < [sumweights(n,)| be such that s* + s)* = s ;.

We add CJ(a,b,j — 1) and (19), getting
yg;rl + oy >1. (20)

Sb+1 —

We will show both disjuncts lead to contradiction, starting with the left one. If a =

|sumweights(n;)|, we are done; otherwise, y' ; fulfills the assumptions of Lemma 17, so we
apply® Lemmas 17 and 18 iteratively to (20). If 5] > s@lmweighm(m)‘, we get
n
y\slumweights(m)\-i-l + yglf{»l > 1. (21)

after at most |[sumweights(n;)| — a iterations. Otherwise, let a + 1 < ¢ < |sumweights(n;)|
be the least index such that s/t > s;’: we get

after at most ¢ — (a + 1) iterations and an application of Lemma 17. The case for yl,, is
similar. <

8 As before, technically, we apply a slightly modified version of those lemmas that ignores ygj_l throughout
the proof.

XX:11

DP 2025

	1 Introduction
	2 Preliminaries
	3 A counterexample
	4 Proof logging
	A Omitted proofs

