
Proof logging the Generalized Totalizer Encoding1

Carlos Cantero # �2

KU Leuven, Belgium3

Bart Bogaerts # Ñ �4

KU Leuven, Belgium5

Vrije Universiteit Brussel, Belgium6

Dieter Vandesande # �7

KU Leuven, Belgium8

Vrije Universiteit Brussel, Belgium9

Abstract10

There are many different pseudo-Boolean encodings, including the Generalized Totalizer Encoding,11

and various proof logging techniques have been developed for some of them. Those techniques12

are able to certify certain correctness properties in the context of, for example, pseudo-Boolean13

solving and MaxSAT solving. In this work, we present a cutting planes derivation of the original14

pseudo-Boolean constraint from the clauses generalized by its Generalized Totalizer Encoding;15

together with a previous proof, this derivation can be used to certify via proof logging the one-to-one16

correspondence of the models of a constraint and its Generalized Totalizer Encoding, a crucial17

correctness property for pseudo-Boolean model counting. We also show that the traditional definition18

of the Generalized Totalizer Encoding is incomplete in this sense, and offer a simple way to fix it.19
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1 Introduction25

During the last few decades, combinatorial optimization techniques have quickly improved,26

and we are able to solve a higher number of problems quicker and quicker every year. While27

this is generally a good thing, it also brings with it important technical difficulties, like safety28

concerns: we may be content with the low percentage of failure that plain testing allows29

for most algorithms, but for some sensitive cases, like scheduling of organ transplants or30

automated public transport, we would like to achieve zero error.31

This is possible through formal verification, a series of techniques that ensure the cor-32

rectness of a system with respect with a mathematical specification, proving a number of33

conditions are satisfied, and, in particular, allowing to prove that an algorithm will never fail.34

But traditional formal verification techniques, like model checking, are slow and complicated35

processes and can hardly keep up with the fast evolution of combinatorial optimization36

algorithms: an alternative is proof logging, a much more suitable verification technique for37

the particularities of this field.38

Proof logging consists in making algorithms output a small proof of the correctness of a39

particular execution, which can later be checked by a much simpler proof checker, fit to be40

formally verified. Proof logging an algorithm does not guarantee the general correctness of41

the algorithm, but it does ensure the correctness of every execution accepted by the proof42

checker. This offers both weaker and stronger guarantees with respect to traditional formal43

verification: weaker because they are less general, and stronger because they also certify44

every execution is free from isolated problems, like bit-flips due to gamma rays. Proof logging45
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XX:2 Proof logging the Generalized Totalizer Encoding

also offers a great opportunity for auditability, providing useful debugging information when46

something does go wrong.47

This is why we can observe an increased interest in proof logging techniques in the last two48

decades, as exemplified by the mandatory introduction of proof logging for SAT solvers in the49

main track of the SAT competition. Another discipline that can benefit from proof logging is50

the field of pseudo-Boolean-to-CNF encodings: the translation of pseudo-Boolean constraints51

into CNF formulas. A possible use of that proof logging is the complete certification of52

pseudo-Boolean solvers, since a number of them work by translating the input into CNF and53

then applying a SAT solver to the resulting clauses: at the moment, only the proof logging54

of the second part of this process has been extensively adopted.55

There are many different PB-to-CNF encodings, one of which is the Generalized Totalizer56

Encoding (GTE). First introduced for cardinality constraints (pseudo-Boolean constraints57

in which every weight is equal to one) in [1], it was extended to general pseudo-Boolean58

constraints in [4]. The task of proof logging a PB-to-CNF encoding has two directions:59

constraint to clauses, where we prove that every model (satisfying assignment) of the original60

pseudo-Boolean constraint is also a model of the resulting encoding, and clauses to constraint,61

in which we prove the converse.1 The direction constraint to clauses of the GTE was certified62

in [6], and it allows us to produce proofs of unsatisfiability, which is why it has been used to63

certify the iterative MaxSAT solver QMaxSAT [7]. A proof of the converse direction would64

enable us to certify techniques that need to preserve one-to-one correspondence of models65

between clauses and constraint, like pseudo-Boolean model counting.66

Our contributions67

In this paper, we present a proof of the clauses to constraint direction, to the best of our68

knowledge for the first time. Following the lead of [6], we will show that direction via a69

cutting planes derivation, in such a way that the proof can be readily transformed to a proof70

logging implementation in VeriPB style.71

With this proof, we confirm there is a one-to-one correspondence of models between the72

GTE encoding and the original pseudo-Boolean constraint. Additionally, we show that the73

traditional definition of the GTE based in [4] is incomplete, in the sense that it does not74

preserve one-to-one correspondence, and we present a simple extension to the definition that75

makes it complete.76

Let us overview the structure of the paper. In Section 2, we introduce all the necessary77

definitions: we explain what a pseudo-Boolean constraint is, we define the GTE, we explain78

how a cutting planes derivation works and we outline our proof logging method; in Section 3,79

we show why the traditional definition of the GTE is incomplete by means of a counterexample;80

finally, in Section 4, we present our proof of the clauses to constraint direction and we explain81

what a proof logging implementation certifying one-to-one correspondence would look like.82

1 More precisely, since in general the PB-to-CNF encodings introduce new variables, what we prove in the
clauses to constraint direction is that every model of the encoding can be restricted to a model of the
original constraint, so that in the end, if we prove both directions, we obtain a one-to-one correspondence
of models rather than an equivalence.
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2 Preliminaries83

▶ Definition 1 (Pseudoboolean constraint). A pseudo-Boolean constraint is an inequality of84

the form85

n∑
i=1

wi · li + j1 ∗
m∑

i=1
w′i · l′i + j2,86

where all wi, all w′i, j1 and j2 are integers, li and l′i are literals (a boolean variable or the87

negation of a boolean variable), and ∗ ∈ {≤,≥}.88

▶ Definition 2 (Normalized form). A pseudo-Boolean constraint in normalized form has the89

following structure:90

n∑
i=1

wi · li ≥ j,91

where all wi (the weights of the literals) are positive integers and j is a nonnegative integer.92

Since every pseudo-Boolean constraint can be easily transformed into a normalized pseudo-93

Boolean constraint (as detailed in [5]), from now on we will assume every constraint is in94

normalized form. We presume the reader is familiar with Boolean logic and the definition of95

CNF; note a clause
n∨

i=1
li can be straightforwardly represented as a constraint:

n∑
i=1

li ≥ 1.96

Now, we will introduce our definition of the GTE. We begin by defining a binary-tree97

structure and some auxiliary concepts that will aid us in the the actual definition.98

▶ Definition 3 (Generalized totalizer tree). A generalized totalizer tree (GTT) T of a constraint99
n∑

i=1
wi · li ≥ j is a binary tree the leaves of which are the literals l1, . . . , ln from the given100

constraint.101

▶ Definition 4 (leaves). Let T be a GTT. For every leaf l of a T we define leaves(l) = {l},102

and for every internal node η of T we define leaves(η) = leaves(η1) ∪ leaves(η2).103

▶ Definition 5 (weight). Let T be a GTT and η be a node of T . Then, weight(η) represents104

the sum of the weights of all leaves which are descendants of η. Formally, for every leaf l = li,105

we define weight(l) = wi, where wi is the weight of the literal li in the given constraint, and106

for every internal node η, we say weight(η) = weight(η1) + weight(η2).107

▶ Definition 6 (sumweights). Let T be a GTT. For every node η of T , the sequence108

sumweights(η) is intended to represent all possible combinations of weights of the leaves of η109

in increasing order. Formally, for every leaf l, we define sumweights(l) = ⟨weight(l)⟩; for110

every internal node η, we define sumweights(η) as the sequence of all the elements from the111

following set in increasing order:112

sumweights(η1)∪sumweights(η2)∪{w1+w2 : w1 ∈ sumweights(η1)∧w2 ∈ sumweights(η2)}.113

Let us denote the i-th element of sumweights(η) by sη
i , where the smallest index is i = 1. If114

the context makes η clear, we sometimes say just si. For every node η, we convene sη
0 = 0115

and sη
|sumweights(η)|+1 = sη

|sumweights(η)| + 1.116

▶ Definition 7 (Counting variables). Let T be a GTT. We introduce a variable yη
sj

for every117

node η of T and every 1 ≤ j ≤ |sumweights(η)|, with the intended meaning that the sum118

of the true weighted literals from leaves(η) adds up to at least sj. We convene yη
0 = 1 and119

yη
|sumweights(η)|+1 = 0, and yl

s1
= l for every leaf l.120

DP 2025
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▶ Definition 8 (Generalized totalizer encoding). Let T be a GTT. For every internal node η121

of T , its GTE is the set of the clauses122

Cη
1 (a, b, c) = ȳη1

sa
∨ ȳη2

sb
∨ yη

sc

Cη
2 (a, b, c) = yη1

sa+1
∨ yη2

sb+1
∨ ȳη

sc+1

123

for all values of 0 ≤ a ≤ |sumweights(η1)| and 0 ≤ b ≤ |sumweights(η2)| and 0 ≤ c ≤124

|sumweights(η)| such that sη1
a + sη2

b = sη
c , and of the clauses125

Cη
3 (j) = ȳη

sj
∨ yη

sj−1
126

for every 1 < j ≤ |sumweights(η)|. We have Cη
1 (a, b, c) represents yη1

sa
∧ yη2

sb
→ yη

sc
, while127

Cη
2 (a, b, c) represents ȳη1

sa+1
∧ ȳη2

sb+1
→ ȳη

sc+1
, meaning that if the leaves of η1 add up to at128

most sa and the leaves of η2 add up to at most sb, then the leaves of η add up to at most sc.129

Cη
3 (j) represents yη

sj
→ yη

sj−1
, meaning that if the sum of the true leaves of η adds up to at130

least sj, then it must add to at least sj−1.131

The GTE of T is the union of the GTEs of every internal node of T . Finally, let132
n∑

i=1
wi · li ≥ j be a constraint, let T be the its GTT, let ηrt be the root node of T and let133

0 ≤ k ≤ |sumweights(ηrt)| be the least index such that sηrt
k ≥ j (if j > sηrt

|sumweights(ηrt)|, then134

simply k = |sumweights(ηrt)|+ 1). Then, the GTE of
n∑

i=1
wi · li ≥ j is the union of the GTE135

of T and {yηrt
sk
}.136

Now, we present the basics of the cutting planes proof system (introduced in [3]), which137

our proof will be based on. This proof system reasons with pseudo-Boolean constraints and138

is implicationally complete (meaning that given a set of constraints as input, it can derive139

any constraint that is implied by them), making it perfect for our proof logging purposes.140

This is why VeriPB (see [2]), the leading tool used for pseudo-Boolean proof logging, is based141

on this proof system. The main rules of the cutting planes proof system are the following:142

▶ Definition 9 (Main rules).143

Literal Axiom
l ≥ 0

n∑
i=1

wi · li ≥ j1
m∑

i=1
w′i · l′i ≥ j2

Addition Rulen∑
i=1

wi · li +
m∑

i=1
w′i · l′i ≥ j1 + j2

144

n∑
i=1

wi · li ≥ j

Multiplication Rule
n∑

i=1
(c · wi) · li ≥ c · j

n∑
i=1

wi · li ≥ j

Division Rulen∑
i=1
⌈wi/c⌉ · li ≥ ⌈j/c⌉

145

The previous rules are enough to achieve implicational completeness, but we also include146

the following two rules to allow for shorter derivations:147

▶ Definition 10 (Additional rules).148

n∑
i=1

wi · li ≥ j

Saturation Rulen∑
i=1

min(j, wi) · li ≥ j

w · l +
n∑

i=1
wi · li ≥ j

Weakening Rule
n∑

i=1
wi · li ≥ j − w

149
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We say there is a cutting planes proof of constraint C from a set of constraints S when150

there is a sequence of cutting planes rules that takes as input the constraints from S and151

ends with C.152

Then, our objective is to derive the original constraint from its GTE via a cutting153

planes proof. But we will prove something stronger: we will show that from the GTE of a154

constraint, we can derive by cutting planes all the reification constraints of the counting155

variables associated with the given constraint, including the constraint itself. The reification156

constraints of a counting variable yη
sj

assert its intended meaning:157

yη
sj
←→

∑
l∈leaves(η)

weight(l) · l ≥ sj . Formally,158

▶ Definition 11 (Reification constraints). For a node η of a GTT and 0 ≤ j ≤ |sumweights(η)|,159

the reification constraints of yη
sj

are:160

C→reif(yη
sj

) = sj · ȳη
sj

+
∑

l∈leaves(η)
weight(l) · l ≥ sj

C←reif(yη
sj

) = (weight(η)− sj + 1) · yη
sj

+
∑

l∈leaves(η)
weight(l) · l̄ ≥ weight(η)− sj + 1.

161

The reification constraints are the touchstones we use when proof logging the GTE: if we can162

show that there is a one-to-one correspondence of models between reification constraints and163

their associated GTE, then we are sure that the counting variables of that GTE are actually164

expressing what we want them to express (including the counting variable which enforces the165

constraint we are encoding). A cutting planes derivation of reification constraints to GTE166

was given in [6],2 and in this paper we will give a derivation of the converse direction.167

3 A counterexample168

The use of the clauses of kind Cη
3 in the generalized totalizer encoding is not standard. The169

traditional way to define the GTE, which is based on [4], introduces only clauses of kind170

Cη
1 and Cη

2 .3 We argue Cη
3 clauses are necessary to achieve one-to-one correspondence of171

the GTE and the reification constraints, as shown by the following simple counterexample:172

consider the constraint 2x1 + 3x2 ≥ 3, and let T be its GTT. The only internal node η of T173

introduces the variables yη
2 , yη

3 and yη
5 , and the traditional GTE of T (without Cη

3 clauses)174

consists of the following clauses:175

Cη
1 (2, 0, 2) = x̄1 ∨ yη

2 Cη
1 (0, 3, 3) = x̄2 ∨ yη

3 Cη
1 (2, 3, 5) = x̄1 ∨ x̄2 ∨ yη

5
Cη

2 (0, 0, 0) = x1 ∨ x2 ∨ ȳη
2 Cη

2 (2, 0, 2) = x2 ∨ ȳη
3 Cη

2 (0, 3, 3) = x1 ∨ ȳη
5 .

176

Two assignments that satisfy every clause while failing to satisfy the reification constraints of177

all the counting variables are {x1 = 1, x2 = 0, yη
2 = 1, yη

3 = 0, yη
5 = 1}, which fails to satisfy178

C→reif(y
η
5 ), and {x1 = 0, x2 = 1, yη

2 = 0, yη
3 = 1, yη

5 = 0}, which fails to satisfy C←reif(y
η
2 ).179

A convenient way to fix this is to introduce the clauses of kind Cη
3 . Those new clauses180

are easily derivable from the reification constraints (we get Cη
3 (j) by adding C→reif(yη

sj
) to181

C←reif(yη
sj−1

), weakening and saturation), so the proof in [6], which uses the traditional version182

of the GTE, is easily generalizable to this new definition.183

2 Actually, the proof there is restricted to cardinality constraints, but it can be immediately extended to
the general case.

3 Actually, the definition in [4] works with a different normalized form and only introduces clauses of kind
Cη

1 , but it can be easily extended with clauses of kind Cη
2 following [1].

DP 2025
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4 Proof logging184

Now, we want to show a cutting planes derivation of GTE to reification constraints. To ease185

the reading, let us introduce some notation: given an internal node η,186

Lη =
∑

l∈leaves(η1)
weight(l) · l Rη =

∑
l∈leaves(η2)

weight(l) · l |Lη| = weight(η1)

L̄η =
∑

l∈leaves(η1)
weight(l) · l̄ R̄η =

∑
l∈leaves(η2)

weight(l) · l̄ |Rη| = weight(η2),187

where we drop the superscript when η is clear by context.188

To show GTE to reification constraints, we will prove two weaker propositions. The first189

proposition will entail GTE to C←reif , and the second one, proven in a similar way, will entail190

GTE to C→reif . But there is a complication: due to there potentially being ‘gaps’ between191

the indexes of the counting variables, for the first proposition we will need a strengthened192

version of C←reif , which we will call C←streif , meaning193

yη
sj
←

∑
l∈leaves(η)

weight(l) · l ≥ sj−1 + 1. Formally,194

▶ Definition 12 (Strengthened reification constraint).

C←streif(yη
sj

) = (weight(η)− sj−1) · yη
sj

+
∑

l∈leaves(η)

weight(l) · l̄ ≥ weight(η)− sj−1.195

For the case j = 0, we convene sj−1 = −1.196

Let us begin with the first proposition, before which we will prove two auxiliary lemmas:197

▶ Lemma 13. Let T be a GTT of a given constraint, let η be an internal node of T , let198

1 ≤ j ≤ |sumweights(η)|, let b ∈ {1, 2} and let v = 1 + (b%2). Given:199

1. C←streif(yη1
sn

) for 0 ≤ n ≤ |sumweights(η1)|+ 1,200

2. C←streif(yη2
sn

) for 0 ≤ n ≤ |sumweights(η2)|+ 1,201

3. the negated reification constraint ¬C→streif(yη
sj

),202

4. ȳηb
si
≥ 1 for 0 < i ≤ |sumweights(ηb)| such that there exists 0 ≤ k ≤ |sumweights(ηv)| so203

that sηb

i−1 + sηv

k ≤ sη
j−1,204

there is a cutting planes derivation of yηv
sk+1
≥ 1, for k the largest index such that sηb

i−1 +sηv

k ≤205

sη
j−1.206

Proof. Let b = 1 without loss of generality. Given ¬C←streif(yη
sj

), which normalizes to207

(|L|+ |R| − sη
j−1) · ȳη

sj
+ L + R ≥ |L|+ |R|+ 1,208

we can derive209

L + R ≥ sη
j−1 + 1 (1)210

by weakening. Our assumption ȳη1
si

contradicts the left hand side of C←streif(yη1
si

), so we add211

(ȳη1
si
≥ 1) · (|L| − sη1

i−1) to C←streif(yη1
si

) to get212

L̄ ≥ |L| − sη1
i−1, (2)213

meaning L ≤ sη1
i−1. Together with our assumption L+R > sη

j−1 this implies R > sη
j−1−sη1

i−1 ≥214

sη2
k , so we add (2) to (1) and weaken to get215

R ≥ sη2
k + 1, (3)216

which is the right hand side of C←streif(yη2
sk+1

), to which we add (3) and saturate to get217

yη2
sk+1
≥ 1. ◀218
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▶ Lemma 14. Let T be a GTT of a given constraint, let η be an internal node of T , let219

1 ≤ j ≤ |sumweights(η)|, let b ∈ {1, 2} and let v = 1 + (b%2). Given:220

1. the GTE of node η,221

2. the negated reification constraint ¬C→streif(yη
sj

),222

3. yηb
sk
≥ 1 for 0 < k ≤ |sumweights(ηv)| so that there exists 0 ≤ i ≤ |sumweights(ηb)| for223

which k − 1 is the largest index such that sηb

i + sηv

k−1 ≤ sη
j−1,224

there is a cutting planes derivation of ȳηv
si
≥ 1, for i the least index for which k − 1 is the225

largest index such that sηb

i + sηv

k−1 ≤ sη
j−1.226

Proof. Let b = 2 without loss of generality. Given ¬C←streif(yη
sj

), which normalizes to227

(|L|+ |R| − sη
j + 1) · ȳη

sj
+ L + R ≥ |L|+ |R|+ 1,228

we can derive229

ȳη
sj
≥ 1 (4)230

by weakening and saturation. We have sη
j ≤ sη1

i + sη2
k (otherwise, sη

j > sη1
i + sη2

k > sη
j−1 by231

maximality of k − 1, and there is an element of sumweights(η) between sη
j−1 and sη

j ), so let232

j ≤ l ≤ |sumweights(η)| be such that sη1
i + sη2

k = sη
l . Then, we have Cη

1 (i, k, l), which we233

add to our assumption yη2
sk
≥ 1 to get234

ȳη1
si

+ yη
sl
≥ 1. (5)235

If l ̸= j, we have a sequence of constraints ȳη
sl

+ yη
sl−1
≥ 1 . . . ȳη

sj+1
+ yη

sj
≥ 1, which we add236

to (5) to get237

ȳη1
si

+ yη
sj
≥ 1. (6)238

And the second disjunct contradicts our assumption ȳη
sj

, so we just have to add (4) to (6) to239

get ȳη1
si
≥ 1. ◀240

▶ Proposition 15. Let T be a GTT of a given constraint, let η be an internal node of T and241

let 1 ≤ j ≤ |sumweights(η)|. Given:242

1. the GTE of node η,243

2. C←streif(yη1
si

) for 0 ≤ i ≤ |sumweights(η1)|+ 1,244

3. C←streif(yη2
si

) for 0 ≤ i ≤ |sumweights(η2)|+ 1,245

we can prove C←streif(yη
sj

) by contradiction using cutting planes.246

Proof. We assume ¬C←streif(yη
sj

) towards contradiction. As shown in the proof of Lemma 14,247

from that assumption we can derive248

ȳη
sj
≥ 1. (7)249

Let 0 ≤ a ≤ |sumweights(η1)| and 0 ≤ b ≤ |sumweights(η2)| be such that sη1
a + sη2

b = sη
j . We250

add Cη
1 (a, b, j) and (7), getting251

ȳη1
sa

+ ȳη2
sb
≥ 1. (8)252

We will show both disjuncts lead to contradiction, starting with the left one. If a = 0, we are253

done; otherwise, ȳη1
a fulfills the assumptions of Lemma 13, so we apply4 Lemmas 13 and 14254

4 Technically, we apply a slightly modified version of those lemmas that ignores ȳη2
b throughout the proof.

DP 2025
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iteratively to (8). If sη
j > sη2

|sumweights(η2)|, we get255

yη2
|sumweights(η2)|+1 + ȳη2

sb
≥ 1. (9)256

after at most |sumweights(η2)| − b iterations and an application of Lemma 13. Otherwise,257

let b ≤ c ≤ |sumweights(η2)| be the least index such that sη2
c ≥ sη

j−1: we get258

ȳη1
0 + ȳη2

sb
≥ 1. (10)259

after at most c− b + 1 iterations. The case for ȳη2
sb

is similar. ◀260

The reasoning for the second proposition is symmetrical, albeit without the need of261

strengthened reification; we relegate it to the appendix due to space constraints.262

▶ Proposition 16. Let T be a GTT of a given constraint, let η be an internal node of T and263

let 1 ≤ j ≤ |sumweights(η)|. Given:264

1. the GTE of node η,265

2. C→reif(yη1
si

) for 0 ≤ i ≤ |sumweights(η1)|+ 1,266

3. C→reif(yη2
si

) for 0 ≤ i ≤ |sumweights(η2)|+ 1,267

we can prove C→reif(yη
sj

) by contradiction using cutting planes.268

Finally, we have everything we need to prove GTE to reification constraints. To close the269

article, let us show how that would be done by presenting a blueprint for an implementation270

of the proof logging of one-to-one correspondence of the GTE in VeriPB-style: given a271

constraint C,272

1. Derive both reification constraints C→reif(y) and C←reif(y) for every counting variable y of273

C by redundance-based strengthening.5274

2. Derive the GTE of C from the reification constraints by using the algorithm in [6] (suitably275

extended to our definition of the GTE). This certifies reification constraints to GTE.276

3. Derive C←streif(y) for every counting variable y of C by using Proposition 15 in a bottom-277

to-top fashion (starting with the leaf nodes and then choosing an unvisited node of at278

least the same level in every iteration); we can do that because C←streif(yl
1) is trivially279

satisfied by every leaf node l, so that the hypotheses of Proposition 15 are satisfied at280

every step.281

4. Delete C.6 Let j be the coefficient of C, and let k be the least index such that sηrt
k ≥ j:282

then, C can be derived by adding C→reif(yηrt
sk

) and yηrt
sk
≥ 1 · sηrt

k and rewriting.283

5. Delete C←reif(y) for every counting variable y of C (we can do that because C←reif(y) trivially284

follows from C←streif(y)).285

6. Delete C→reif(y) and C←streif(y) for every counting variable y in a top-to-bottom fashion286

(starting with the root node and then choosing an unvisited node of at most the same287

level in every iteration) by using Propositions 15 and 16.7 This and the last step certify288

GTE to reification constraints.289

5 VeriPB allows to derive reification constraints ‘for free’ by using a rule called redundance-based strength-
ening.

6 VeriPB allows to delete a constraint D if there is a cutting-planes derivation of D from the rest of the
given constraints. This derivation can also be a proof by contradiction.

7 The reification constraints of yη
sj

for the cases where η is a leaf node or j ∈ {0, |sumweights(η)| + 1} are
trivially derivable.
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A Omitted proofs314

As before, we first prove two auxiliary lemmas.315

▶ Lemma 17. Let T be a GTT of a given constraint, let η be an internal node of T , let316

1 ≤ j ≤ |sumweights(η)|, let b ∈ {1, 2} and let v = 1 + (b%2). Given:317

1. C→reif(yη1
sn

) for 0 ≤ n ≤ |sumweights(η1)|+ 1,318

2. C→reif(yη2
sn

) for 0 ≤ n ≤ |sumweights(η2)|+ 1,319

3. the negated reification constraint ¬C→reif(yη
sj

),320

4. yηb
si
≥ 1 for 0 ≤ i ≤ |sumweights(ηb)| such that there exists 0 ≤ k ≤ |sumweights(ηv)| so321

that sηb

i + sηv

k ≥ sη
j .322

there is a cutting planes derivation of ȳηv
sk
≥ 1, for k the least index such that sηb

i + sηv

k ≥ sη
j .323

Proof. Let b = 1 without loss of generality. Given ¬C→reif(yη
sj

), which normalizes to324

sη
j · y

η
sj

+ L̄ + R̄ ≥ |L|+ |R|+ 1,325

we can derive326

L̄ + R̄ ≥ |L|+ |R| − sη
j + 1 (11)327

by weakening, meaning L + R < sη
j . By C→reif(yη1

si
), we have yη1

si
implies L ≥ sη1

i , so we add328

(yη1
si
≥ 1) · sη1

i and C→reif(yη1
si

) to get329

L ≥ sη1
i . (12)330
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Together with our assumption L + R < sη
j , this implies R < sη

j − sη1
i ≤ sη2

k , which is what331

we get when we add (11) and (12) and weaken:332

R̄ ≥ |R| − sη2
k + 1. (13)333

But this contradicts the right hand side of C→reif(yη2
sk

), so we add that reification constraint to334

(13) and saturate, getting335

ȳη2
sk
≥ 1. (14)336

◀337

▶ Lemma 18. Let T be a GTT of a given constraint, let η be an internal node of T , let338

1 ≤ j ≤ |sumweights(η)|, let b ∈ {1, 2} and let v = 1 + (b%2). Given:339

1. the GTE of node η,340

2. the negated reification constraint ¬C→reif(yη
sj

),341

3. ȳηb
sk
≥ 1 for 0 < k ≤ |sumweights(ηv)| such that there exists 0 ≤ i ≤ |sumweights(ηb)| for342

which k is the least index such that sηb

i + sηv

k ≥ sη
j ,343

there is a cutting planes derivation of yηv
si+1
≥ 1, for i the largest index for which k is the344

least index such that sηb

i + sηv

k ≥ sη
j .345

Proof. Let b = 2 without loss of generality. Given ¬C→reif(yη
sj

), which normalizes to346

sη
j · y

η
sj

+ L̄ + R̄ ≥ |L|+ |R|+ 1,347

we can derive348

yη
sj
≥ 1 (15)349

by weakening and saturation. We have sη
j−1 ≥ sη1

i + sη2
k−1 (otherwise, sη

j−1 < sη1
i + sη2

k−1 < sη
j350

by minimality of k, and there is an element of sumweights(η) between sη
j−1 and sη

j ), so let351

0 ≤ l ≤ j − 1 be such that sη1
i + sη2

k−1 = sη
l . Then, we have Cη

2 (i, k − 1, l), which we add to352

our assumption ȳη2
sk
≥ 1 to get353

yη1
si+1

+ ȳη
sl+1
≥ 1. (16)354

If l + 1 ̸= j, we have a sequence of constraints ȳη
sj

+ yη
sj−1
≥ 1 . . . ȳη

sl+2
+ yη

sl+1
≥ 1, which we355

add to (16) to get356

yη1
si+1

+ ȳη
sj
≥ 1. (17)357

And the second disjunct contradicts our assumption yη
sj

, so we just have to add (15) to (17)358

to get359

yη1
si+1
≥ 1. (18)360

◀361

▶ Proposition 16. Let T be a GTT of a given constraint, let η be an internal node of T and362

let 1 ≤ j ≤ |sumweights(η)|. Given:363

1. the GTE of node η,364

2. C→reif(yη1
si

) for 0 ≤ i ≤ |sumweights(η1)|+ 1,365

3. C→reif(yη2
si

) for 0 ≤ i ≤ |sumweights(η2)|+ 1,366
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we can prove C→reif(yη
sj

) by contradiction using cutting planes.367

Proof. We assume ¬C→reif(yη
sj

) towards contradiction. As shown in the proof of Lemma 18,368

from that assumption we can derive369

yη
sj
≥ 1. (19)370

Let 0 ≤ a ≤ |sumweights(η1)| and 0 ≤ b ≤ |sumweights(η2)| be such that sη1
a + sη2

b = sη
j−1.371

We add Cη
2 (a, b, j − 1) and (19), getting372

yη1
sa+1

+ yη2
sb+1
≥ 1. (20)373

We will show both disjuncts lead to contradiction, starting with the left one. If a =374

|sumweights(η1)|, we are done; otherwise, yη1
a+1 fulfills the assumptions of Lemma 17, so we375

apply8 Lemmas 17 and 18 iteratively to (20). If sη
j > sη1

|sumweights(η1)|, we get376

yη1
|sumweights(η1)|+1 + yη2

sb+1
≥ 1. (21)377

after at most |sumweights(η1)| − a iterations. Otherwise, let a + 1 ≤ c ≤ |sumweights(η1)|378

be the least index such that sη1
c ≥ sη

j : we get379

ȳη2
0 + yη2

sb+1
≥ 1. (22)380

after at most c− (a + 1) iterations and an application of Lemma 17. The case for yη2
sb+1

is381

similar. ◀382

8 As before, technically, we apply a slightly modified version of those lemmas that ignores yη2
b+1 throughout

the proof.
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