
An Evaluation of Constraint-Based Approaches to1

Cumulative Scheduling with Delays2

Antton Kasslin1 #3

University of Helsinki, Helsinki, Finland4

Jeremias Berg #Ñ5

University of Helsinki, Helsinki, Finland6

Abstract7

Scheduling problems arise in many applications and are commonly solved with constraint-based8

methods. We study a variant of the so-called resource-constrained cumulative scheduling problem in9

which a set of workers must send workloads to a shared processing facility. The goal is to schedule10

the workload sent from each worker at each time step without exceeding the facility’s maximum11

processing capacity or the storage capacities of the workers. In a central instantiation of the problem,12

the workers are e.g. industrial sources that produce wastewater that needs to be transferred to a13

treatment plant. The problem of computing a feasible schedule in a similar setting has previously14

been studied under the name of the wastewater treatment plant problem.15

More precisely, we study the applicability of optimization modulo theories (OMT) and mixed16

integer programming (MIP) to solving real-world benchmarks of this scheduling problem. As our17

main contributions, we: i) extend a previously proposed constraint model for computing feasible18

schedules by e.g., allowing delays between the workers and the facility, ii) extend the model with19

several different optimization criteria, including optimizing for evenness of the workload arriving20

at the facility, and minimizing the makespan of the schedule, and iii) collect a new dataset based21

on real-world wastewater flow quantities. We evaluate our model on two differently-sized time22

spans of the new dataset as well as on previously used benchmarks using state-of-the-art solvers23

in both paradigms. Our evaluation demonstrates that optimization criteria related to makespan24

minimization do not need to slow down the run time of the solvers. In contrast, the criteria on25

workload evenness are, in general, more difficult to handle.26

2012 ACM Subject Classification Applied computing, Operations research27

Keywords and phrases Optimization Modulo Theories, OMT, Mixed Integer Linear Programming,28

MILP, Preemptive Cumulative Scheduling, Flow Evenness, Time Delay29

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.2330

1 Introduction31

The resource-constrained scheduling problem (RCSP) [5, 2] is a well-known and general32

formalization of a problem setting in which tasks need to be scheduled over a discrete33

timeframe in a way that respects the resource requirements of the individual tasks and any34

possible precedence constraints between them. We focus on a variant of preemptive cumulative35

scheduling that, arguably, has received less attention than many other variants of RCSP [2]36

and in doing so contribute to the well-established field of constraint-based approaches across37

various constraint paradigms for solving scheduling problems [2, 20, 9, 10, 7, 13, 17].38

In our problem setting, a set of workers must access the limited resources of a shared39

processing facility. At each time step, all workers release separate tasks that each require40

some amount of the facility’s processing capacity. Each worker can then send a part of41

the task’s total workload directly to the facility, and temporarily store the remainder. The42

1 Corresponding author

© Antton Kasslin and Jeremias Berg;
licensed under Creative Commons License CC-BY 4.0

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:9

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:antton.kasslin@helsinki.fi
mailto:jeremias.berg@helsinki.fi
http://www.jeremiasberg.com
https://doi.org/10.4230/LIPIcs.CVIT.2016.23
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 An Evaluation of Constraint-Based Approaches to Cumulative Scheduling with Delays

goal is to schedule the workload sent from each worker at each timestep without exceeding43

either the maximum intake capacity of the facility or the storage capacities of individual44

workers. The general formulation highlights that our model could be applicable in many45

settings; the processing facility could be a storage facility or a vaccination center that needs46

to vaccinate parts of the population. In our experiments, we focus on a central concrete47

instantiation of the problem called the wastewater treatment problem in which the workers48

are pumping stations [16, 4] that, at each timestep, receive some amount of water that needs49

to be transported to a wastewater treatment plant (wwtp) for processing. Each station can50

temporarily store a limited amount of water, and the treatment plant can only receive a51

limited amount at each timestep. To the best of our understanding, we present the first study52

into constraint models for optimal schedules. While presented through the lens of scheduling53

in previous work, this problem is also closely related to flow allocation in networks [15, 1].54

As the main contribution of this paper, we develop a constraint model for computing55

schedules to the general formulation of the wastewater treatment problem. Our model is56

designed based on consultation from Helsinki Region Environmental Services Authority57

(HSY). Specifically, we allow a time delay between a worker releasing workload and that58

workload arriving at the facility. In contrast to previous work on a similar problem [16, 4], our59

model also allows each worker to send only part of the new workload for processing at a time.60

We study the computational feasibility of finding both feasible and optimal schedules under61

a number of different optimization criteria. We show how to minimize the makespan of the62

schedule and how to compute schedules in which the amount of workload (e.g. wastewater)63

arriving at the processing facility is evened out. Especially the latter criterion is motivated64

by the discussions with HSY; high wastewater influx rates are undesirable as they necessitate65

feeding the input faster through the limited-capacity treatment process, leading to worse66

output water quality. We detail an optimization modulo theories (OMT) [19, 18, 3], and a67

mixed integer programming (MIP) [6] model for this problem.68

Further, we collect real-world wastewater data from HSY to form a new set containing69

1248 benchmarks for OMT and MIP. We report on an extensive evaluation of state-of-the-art70

solvers in these two constraint paradigms on this problem. In addition, we evaluate solvers71

on the data used in [4]. In the evaluation, we study different variants of the problem and72

demonstrate, e.g., the effect of enforcing all workloads to integer values. Our results indicate73

that computing optimal schedules incurs a 0...42x overhead when compared to computing74

feasible ones and that the MIP solver Gurobi is especially effective in solving these problems.75

2 Preliminaries76

2.1 Cumulative Resource-Constrained Scheduling with Delays77

We study a variant of the resource-constrained cumulative scheduling problem in which78

each worker can subdivide and temporarily store their tasks. For example, consider a set79

of pumping stations that pump wastewater to a treating facility that can process a limited80

amount of wastewater at each time step. Each pumping station receives new wastewater at81

each time step and needs to decide how much to pump forward for treatment and how much82

to store in its limited-capacity temporary storage. The task is to schedule the amount of83

water pumped forward at each timestep while ensuring that neither the treating facility’s84

processing capacity, nor any pumping station’s storage capacity is exceeded. Additionally,85

the output capacity (volume per timestep) of each pumping station is limited, and it takes86

some time for the water to arrive from a pumping station to the facility.87

More abstractly, a problem instance in our setting specifies a finite and discretized time88

A. Kasslin and J.Berg 23:3

Table 1 Example of a feasible schedule for wastewater pumping for two stations (workers)
with maximum outputs maxOutput1 = 6000 and maxOutput2 = 10000 per timestep t, and wwtp
maxCapacity = 15000 for each t. Storage(w, t) denotes the storage level of worker w at the end of
timestep t, measured after the possible storage level changes during t.

t Worker 1 Worker 2 Total to wwtp
task Sout P Storage task Sout P Storage

0 0 0 0 3000 0 0 0 5000 0
1 4000 2000 4000 1000 2000 4000 2000 1000 12000
2 5000 1000 5000 0 5000 1000 5000 0 12000

horizon over #t timesteps under which #w different workers need the limited resources of a89

single shared facility that can receive a total workload of maxCapacity on each time step.90

The input instance specifies for each worker w and timestep t the new incoming resource91

requirement taskw,t that w will need from the facility within the time horizon. Since the92

facility can receive a limited quantity of workload per timestep, each worker can temporarily93

store up to storageCapacityw of workload. The total quantity of storage capacity at each94

worker is constant; the quantity stored at time t takes from the remaining storage space95

available at subsequent timesteps until the workload is sent to the facility. Finally, we assume96

that the sent workload takes dw timesteps to arrive from w at the facility and that the97

maximal rate of workload output to the facility for each worker is limited by maxOutputw.98

The goal in our setting is to schedule the amount of workload sent from each worker at99

each timestep to the facility. More precisely, a schedule specifies for each worker w a storage100

output Sout(w, t) as the amount of the currently stored workload to send for processing101

at timestep t, and the part P(w, t) of taskw,t released at timestep t to immediately send102

for processing. The rest of the task released at t then needs to be temporarily stored. A103

schedule is feasible if neither the maximum capacity of the facility nor the maximum storage104

or output capacities of any worker are exceeded at any timestep.105

In contrast to the model presented here, a previous study [4] considered solely feas-106

ibility with strictly zero-hour delays, all-or-none storage of incoming tasks and unlimited107

output for P(w, t). Further, as our focus is on optimization instead, we only consider in-108

stances in which the time horizon, the maxCapacity of the facility, and the maxOutputw and109

storageCapacityw values of the workers are large enough for feasible schedules to exist.110

For a concrete example, Table 1 details a feasible schedule for a problem instance with a111

wastewater treatment plant (wwtp) as the shared facility, and two pumping stations located 0112

hours away from the facility (i.e. d1 = d2 = 0). The workers have individual storage capacities113

of storageCapacity1 = 6000 m3 and storageCapacity2 = 10000 m3, respectively. The114

displayed schedule assumes initial storage levels of startLevel1 = Storage(1, 0) = 3000 and115

startLevel2 = Storage(2, 0) = 5000 m3.116

2.1.1 Optimal Schedules117

We introduce three objectives motivated by a desire to find schedules that reduce exceptionally118

high or low levels in the hourly processing requirements placed on the facility. The motivation119

for even input to a wwtp is motivated by the treatment processes [16] and discussions we had120

with the local agency. With high influx rates, water has to be fed through the limited-capacity121

process faster, resulting in a shorter retention time for the water in each successive part of122

the process, reducing the overall treatment level. Additionally, optimization of the treatment123

process itself is facilitated by a steady influx of wastewater.124

CVIT 2016

23:4 An Evaluation of Constraint-Based Approaches to Cumulative Scheduling with Delays

In more detail, we focus on three separate optimization criteria related to minimizing125

fluctuations in the quantity of workload that arrives at the facility. In the following, let126

Total(t) be the total workload arriving at the facility at timestep t. Objective MAXMIN127

maximizes MinWorkload, i.e., maximizes the minimum workload arriving at the facility over128

all timesteps. Analogously, MINMAX minimizes the maximum Total(t), resulting in the smallest129

possible maximum workload MaxWorkload received at the facility during the time horizon.130

Finally, MINDIFF minimizes the difference MaxWorkload−MinWorkload, essentially preferring131

schedules with more even incoming hourly workloads. Under this objective, the problem can132

be seen as an example of a resource leveling problem [12]. Table 1 shows an optimal schedule133

with the MINDIFF objective, where MaxWorkload − MinWorkload = 12000 − 12000 = 0.134

Additionally, we present results on two objectives seen in previous work on scheduling135

problems. Objective MAKESPAN minimizes the makespan of the schedule, i.e. the last timestep136

at which the facility receives workload, and objective MSTORAGE minimizes the sum of137

Storage(w, t) over all w and t. As an interesting side note, optimal schedules under MSTORAGE138

lead to the achievement of the MAKESPAN objective; because a decrement of Storage(w, t) by a139

quantity of Sout(w, t) > 0 also decreases the sum of Storage(w, t+1)+ · · ·+Storage(w, #t),140

MSTORAGE empties all storages at the earliest possible timesteps. Thus, solutions that are141

optimal under MSTORAGE are also optimal under MAKESPAN.142

2.2 OMT and MIP143

We assume familiarity with propositional logic and satisfiability and recount some basics of144

optimization modulo theories (OMT) with arithmetics over integer and real numbers.145

A term T is a sum or difference of integer or real variables. A theory atom a is a146

comparison T1 < T2 or T1 = T2. A literal ℓ is either a {0, 1}-variable x or a theory atom a.147

A clause C is a disjunction (∨) of literals, and a formula F is a conjunction (∧) of clauses.148

An assignment α maps variables to their domains. A theory atom a is assigned to 1 by149

α (i.e. α(a) = 1) if assigning the variables in the terms results in a true comparison. The150

semantics of assignments are extended to literals, clauses and formulas in the standard way:151

α(¬ℓ) = 1 − α(ℓ), α(C) = max{α(ℓ) | ℓ ∈ C}, and α(F) = min{α(C) | C ∈ F}. We say that152

an assignment α for which α(F) = 1 is a solution to F . The satisfiability modulo linear153

integer and rational arithmetic problem is to decide the existence of a solution to a given154

formula. An OMT instance (over the same theory) (F, T) consists of a formula F and a155

term T. The task is to compute a solution α of F that minimizes T.156

In addition to OMT, we consider mixed integer programming (MIP) where the goal is157

to minimize an objective O ≡
∑

icizi +
∑

iciri where zi are integer variables, ri are real158

variables, and ci are real constants, subject to a set of linear inequalities.159

3 The OMT Model160

3.1 Constraints in the OMT and MIP Models161

The amount of workload immediately sent for processing by worker w is at most taskw,t;162

the constraints163

(0 ≤ P(w, t)) ∧ (P(w, t) ≤ taskw,t) (1)164

are included for all timesteps t in the range of 1 to #t − dw. Note that for any feasible165

schedules to exist taskw,t = 0 has to hold for the last dw timesteps.166

A. Kasslin and J.Berg 23:5

To simplify notation, let Storage(w, 0) = startLevelw for all w. In any feasible schedule,167

the storage of worker w must be emptied at the latest at #t − dw and not increased after168

it so that all of the workload from w can arrive at the facility by the timestep #t. In our169

model, the Sout(w, t) variable is only included for t ∈ [1, #t − dw] during which its domain170

is set to be between 0 and storageCapacityw; the constraint171

(0 ≤ Sout(w, t)) ∧ (Sout(w, t) ≤ Storage(w, t − 1)). (2)172

is added for all timesteps t ∈ [1, #t − dw]. Our setting also requires that the total quantity of173

workload sent from w at each time step is at most maxOutputw. The constraint174

(Sout(w, t) + P(w, t) ≤ maxOutputw). (3)175

is included for all workers and timesteps in the range of 1 to #t − dw. The domain of176

Storage(w, t) is set between 0 and storageCapacityw for all timesteps in the range of 0 to177

#t−dw − 1 and to equal 0 for the final dw + 1 timesteps (note that Storage(w, t) denotes the178

storage level at the end of timestep t, after possible emptying or filling at t). The constraint179

(0 ≤ Storage(w, t)) ∧ (Storage(w, t) ≤ storageCapacityw) (4)180

is included for t ∈ [0, #t − dw − 1], and (Storage(w, t) = 0) for t ∈ [#t − dw, #t].181

Finally, the total workload arriving for processing at t is the sum of storage-derived and182

immediately sent workloads arriving from each worker at t; the constraint183

Total(t) =
∑#w

w=1Sout(w, t − dw) + P(w, t − dw) (5)184

is added for all timesteps. With these variables, the constraint that enforces that the185

maximum capacity of the facility is not exceeded is186

(Total(t) ≤ maxCapacity) (6)187

which is added for all timesteps t ∈ [1, #t].188

The amount of new workload stored at worker w on time t is taskw,t − P(w, t). Thus, the189

amount of workload stored at worker w is increased on each iteration by taskw,t − P(w, t)190

and decreased by Sout(w, t):191

Storage(w, t) = Storage(w, t − 1) − Sout(w, t) + taskw,t − P(w, t) (7)192

which is added for all w ∈ [1, #w] and t ∈ [1, #t − dw].193

The amount of new workload taskw,t is equal to the amount of workload immediately194

sent for processing and any positive change in the amount stored at w. If the change in the195

amount stored is negative (or zero), indicating that some workload (or none) was also sent196

from the storage, then the workload equal to taskw,t should be sent for processing as P(w, t):197

¬(0 < ∆S(w, t)) ∨ (taskw,t = P(w, t) + ∆S(w, t)) (8)198

¬(∆S(w, t) ≤ 0) ∨ (taskw,t = P(w, t)) (9)199

i.e. 0 < ∆S(w, t) =⇒ taskw,t = P(w, t) + ∆S(w, t) and ∆S(w, t) ≤ 0 =⇒ taskw,t = P(w, t),200

where ∆S(w, t) = Storage(w, t) − Storage(w, t − 1) is used only as a notational shorthand.201

Constraints 8 and 9 are added for all w ∈ [1, #w], t ∈ [1, #t − dw], for which taskw,t > 0.202

We summarize the model for computing feasible schedules as follows. Let F schedule be an203

SMT formula consisting of Constraints 1-9 as specified in this section. Then any solution α of204

CVIT 2016

23:6 An Evaluation of Constraint-Based Approaches to Cumulative Scheduling with Delays

F schedule sets the P(w, t), Sout(w, t), and Storage(w, t) variables in a way that corresponds205

to a feasible schedule.206

For the MIP model, we further introduce a {0, 1}-variable SMinus(w, t) as an indicator207

for w emptying (some of) its storage at t, i.e. for Sout(w, t) > 0. Constraints 1-7 remain as208

for the OMT model, while constraints 8-9 are replaced with the following "Big-M" encoding:209

∆S(w, t) ≤ −ϵ · SMinus(w, t) + M · (1 − SMinus(w, t)) (10)210

∆S(w, t) ≥ −M · SMinus(w, t) (11)211

P(w, t) ≥ taskw,t − M · (1 − SMinus(w, t)) (12)212

P(w, t) ≤ taskw,t + M · (1 − SMinus(w, t)) (13)213

P(w, t) + ∆S(w, t) ≥ taskw,t − M · SMinus(w, t) (14)214

P(w, t) + ∆S(w, t) ≤ taskw,t + M · SMinus(w, t) (15)215

where the constant ϵ is set to 10−14 as the smallest possible positive storage decrement.216

3.2 Optimal Schedules with OMT217

To extend the constraint model from feasibility to optimization, we next describe how to218

encode each of the five optimization criteria o discussed in Section 2.1.1 as a term To such that219

the optimal solutions to the OMT instance (F schedule, To) correspond to optimal schedules220

under o. Here F schedule is an SMT formula consisting of Constraints 1-9 as concluded in 3.1.221

To encode MAXMIN and MINMAX, we add real variables MinWorkload and MaxWorkload as222

well as constraints (MinWorkload ≤ Total(t)) ∧ (Total(t) ≤ MaxWorkload) for all t ∈ [1, #t].223

Then maximizing MinWorkload over the solutions that satisfy the F schedule maximizes224

the minimum workload arriving at the facility at each time step (MAXMIN). Analogously,225

minimizing MaxWorkload obtains a schedule that minimizes the maximum workload (MINMAX).226

Finally, minimizing MaxWorkload − MinWorkload obtains a schedule in which the largest227

absolute difference in arriving workload is as small as possible across all timesteps, i.e. MINDIFF.228

The bounds for MinWorkload and MaxWorkload are initialized to 0 and maxCapacity.229

The MSTORAGE objective is encoded by minimizing the sum of all Storage(w, t) variables.230

Finally, the MAKESPAN objective is encoded by minimizing the integer LastWorkIn variable231

defined to equal the last time step on which the facility receives any workload. This definition232

is enforced with the constraints (¬Total(t) > 0) ∨ (t ≤ LastWorkIn) added for each timestep.233

4 Experimental Evaluation234

Benchmarks and Setup235

We establish two sets of benchmarks with maxCapacity values between 5000 and 50000236

depending on the set: the 24-hour local set and the 1104-hour local set based on the237

timespans from 2024-11-16 00:00 to 2024-11-16 23:00 and to 2024-12-31 23:00, respectively.238

For the five optimization criteria, the full sets include 1248 benchmarks, including 208239

feasibility instances. We also use the real-life dataset (B24) from [4] which includes the240

volumes of wastewater produced each hour over a 24-hour period by eight industrial facilities.241

As OMT solvers, we consider OptiMathSAT (OMath.) version 1.7.3 [18] (obtained from242

https://optimathsat.disi.unitn.it/) and Z3 [8] (from https://github.com/Z3Prover/243

z3). For MIP, we use Gurobi version 12.0.0 [11] (from https://www.gurobi.com/). The244

solvers and benchmarks (including the script for generating them) are available at [14].245

https://optimathsat.disi.unitn.it/
https://github.com/Z3Prover/z3
https://github.com/Z3Prover/z3
https://github.com/Z3Prover/z3
https://www.gurobi.com/

A. Kasslin and J.Berg 23:7

Table 2 Solve percentages and mean running without (Feas.) or with optimization criteria with
workloads as floats (Type = Float) or as integer (Type = Int). Each cell corresponds to 76 runs.

Solver Type Metric Feas. MSTORAGE MAKESPAN MAXMIN MINMAX MINDIFF

Z3 Float solved 100% 61.8% 100% 80.3% 60.5% 60.5%
mean 16.6s 707.6s 191.2s 455.1s 717.3s 717.1s

Int solved 100% 93.4% 100% 100% 100% 78.9%
mean 25.3s 559.7s 24.1s 52.4s 232.8s 519.7s

OMath. Float solved 100% 60.5% 60.5% 60.5% 60.5% 60.5%
mean 176.8s 713.0s 712.8s 712.7s 712.4s 712.8s

Int solved 100% 60.5% 60.5% 60.5% 60.5% 55.3%
mean 95.0s 713.4s 712.7s 713.0s 712.9s 809.0s

We study the effects of (1) handling exclusively either floating point or integer values,246

and (2) different delay values on benchmark solving times. The real-life delay for all workers247

in the local data is 0. The problem setting of B24 dataset from [4] did not consider delays.248

Thus, we consider the default delays in the BMM set to be 0 as well. To demonstrate the249

effect of delays, we consider a variant of the benchmarks with synthetic delay values. For the250

local sets, the synthetic variant puts the delay of the second worker to 2. For the BMM set,251

we randomly assigned the delay values 2,2,5,2,6,5,3 and 4 hours for the 8 facilities.252

The total number of benchmarks is obtained as the number of different maximum capacity253

values considered, plus the four configurations following from the two variants (delays and254

integer workloads). The total number of unique combinations over all the datasets is255

44+60+48=152 for OMT and MIP models, encompassing all combinations of maxCapacity,256

integer vs. floating-point workloads, and all-zero or synthetic delays. Combined with the 5257

optimization criteria and runs without optimization we end up with 912 runs for each solver.258

The OMT benchmarks in SMT-LIBv2-format were produced using the Python API of259

Z3 [8], and the MIP benchmarks in MPS format with the Python API of Gurobi [11]. All260

evaluations were performed single-threaded on 2.50-GHz Intel Xeon Gold 6248 machines with261

381-GB RAM in RHEL under a per-instance 32-GiB memory limit and 30-minute time limit.262

4.1 Results263

Most notably, all Gurobi runs finished within 32 seconds, whereas both Z3 and Optimathsat264

had instances for the MSTORAGE, MAXMIN, MINMAX and MINDIFF objectives that were not solved265

in 30 minutes. Table 2 overviews the effect of different optimization criteria as well as266

enforcing all workload values to integers on the overall solving time of the OMT solvers.267

We observe that neither the distinction between integral or floating point values nor268

the choice between different optimization criteria influence the running time OptiMathSAT269

that much. For Z3, enforcing the MSTORAGE optimization criteria leads, in general, to270

higher running times and fewer solved instances compared to enforcing MAKESPAN. We also271

observe that Z3 generally solves the integer-restricted benchmarks more efficiently, and that272

optimizing the evenness of the flow to the processing plant (MINDIFF, MINMAX, MAXMIN) is in273

general more challenging than enforcing MAKESPAN. While Z3 solved all feasibility instances274

and 58.3 % of the optimization instances of the L1104 dataset, OptiMathSAT was not able275

to solve any optimization benchmarks from the L1104 set in thirty minutes.276

As an interesting side note, we observe that when enforcing the constraint that requires277

either all-new wastewater produced to be directly sent for processing or then none of it278

CVIT 2016

23:8 An Evaluation of Constraint-Based Approaches to Cumulative Scheduling with Delays

Table 3 Percentage of all benchmarks solved when the delays are synthetic (Type=synthetic) or
all zero (Type=all-zero). Each cell corresponds to 76 runs.

Solver Type Metric Feas. MSTORAGE MAKESPAN MAXMIN MINMAX MINDIFF

Z3 synthetic solved 100% 75.0% 100% 100% 80.3% 78.9%
mean 18.5s 660.6s 106.4s 108.8s 483.1s 519.2s

all–zero solved 100% 80.3% 100% 80.3% 80.3% 60.5%
mean 23.4s 606.7s 108.8s 398.7s 467.0s 717.6s

OMath. synthetic solved 100% 60.5% 60.5% 60.5% 60.5% 60.5%
mean 129.8s 713.2s 713.1s 712.7s 712.7s 713.2s

all-zero solved 100% 60.5% 60.5% 60.5% 60.5% 55.3%
mean 142.0s 713.2s 712.4s 713.0s 712.6s 808.6s

similar to the one used in [4], we observed significant increases in solving time for both279

MIP and OMT. Removing this constraint led to overall decreases in solving time in both280

paradigms, albeit more significant decreases for Gurobi.281

For Z3, MINDIFF and MAXMIN benchmarks with all-zero delays are more difficult to solve282

than those with synthetic delays, while other large differences are not observed (table 3).283

10s 30s 120s 600s 1800s DNF
Time bucket (s)

0

50

100

150

200

250

300

So
lv

ed
 in

st
an

ce
s

B24

10s 30s 120s 600s 1800s DNF
Time bucket (s)

0

50

100

150

200

250
L24

Gurobi
OptiMathSAT
Z3

10s 30s 120s 600s 1800s DNF
Time bucket (s)

0

50

100

150

200

250

300
L1104

Figure 1 The number of solved instances within [0, 10],]10, 30] ,]30, 120] ,]120, 600] and
]600, 1800] s, DNF=not solved in 30 min, for the three solvers over all variations of benchmarks and
optimization criteria, for the datasets (288 benchmarks for B24, 264 for L24, 360 for L1104).

In Figure 1, we observe that Gurobi solves almost all benchmarks in 30 seconds or less284

and that the 1104-hour dataset is more challenging for all solvers, especially for Z3 and285

OptiMathSAT which solves less than a quarter of the L1104 benchmarks in thirty minutes.286

5 Conclusions287

We studied a variant of cumulative scheduling under different optimization criteria, focusing288

on a concrete instantiation in which a set of wastewater sources schedule pumping the water289

for treatment while not overloading the facility’s max capacity or their individual (temporary)290

storage capacities. We presented the first constraint model for computing optimal schedules291

for this problem, collected a new real-world dataset, and used it to evaluate the performance292

of state-of-the-art solvers in MIP and OMT in this setting. Our results demonstrate the293

effectiveness of MIP and the feasibility of OMT for the setting. Interesting future work294

includes extending the model to settings where not all workers are directly connected to the295

processing facility; multiple workers may link together prior to the facility, as is common for296

wastewater treatment infrastructure.297

A. Kasslin and J.Berg 23:9

References298

1 Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network flows - theory,299

algorithms and applications. Prentice Hall, 1993.300

2 Philippe Baptiste and Claude Le Pape. Constraint propagation and decomposition techniques301

for highly disjunctive and highly cumulative project scheduling problems. Constraints An Int.302

J., 5(1/2):119–139, 2000.303

3 Clark W. Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare Tinelli. Satisfiability304

modulo theories. In Handbook of Satisfiability, volume 336 of Frontiers in Artificial Intelligence305

and Applications, pages 1267–1329. IOS Press, 2021.306

4 Miquel Bofill, Víctor Muñoz, and Javier Murillo. Solving the wastewater treatment plant307

problem with SMT. CoRR, abs/1609.05367, 2016.308

5 Yves Caseau and François Laburthe. Cumulative scheduling with task intervals. In JICSLP,309

pages 363–377. MIT Press, 1996.310

6 Der-San Chen, Robert G. Batson, and Yu Dang. Applied Integer Programming: Modeling311

and Solution. Wiley, December 2009. URL: http://dx.doi.org/10.1002/9781118166000,312

doi:10.1002/9781118166000.313

7 Silviu S. Craciunas, Ramon Serna Oliver, Martin Chmelík, and Wilfried Steiner. Scheduling314

real-time communication in IEEE 802.1qbv time sensitive networks. In RTNS, pages 183–192.315

ACM, 2016.316

8 Leonardo Mendonça de Moura and Nikolaj S. Bjørner. Z3: an efficient SMT solver. In C. R.317

Ramakrishnan and Jakob Rehof, editors, Proc TACAS, volume 4963 of Lecture Notes in318

Computer Science, pages 337–340. Springer, 2008. doi:10.1007/978-3-540-78800-3_24.319

9 Emir Demirovic, Nysret Musliu, and Felix Winter. Modeling and solving staff scheduling with320

partial weighted maxsat. Ann. Oper. Res., 275(1):79–99, 2019.321

10 Christodoulos A. Floudas and Xiaoxia Lin. Mixed integer linear programming in process322

scheduling: Modeling, algorithms, and applications. Ann. Oper. Res., 139(1):131–162, 2005.323

11 Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2024. URL: https://www.324

gurobi.com.325

12 Sönke Hartmann and Dirk Briskorn. An updated survey of variants and extensions of the326

resource-constrained project scheduling problem. Eur. J. Oper. Res., 297(1):1–14, 2022.327

13 Xi Jin, Changqing Xia, Nan Guan, and Peng Zeng. Joint algorithm of message fragmentation328

and no-wait scheduling for time-sensitive networks. IEEE CAA J. Autom. Sinica, 8(2):478–490,329

2021.330

14 Antton Kasslin and Jeremias Berg. Benchmark repository for "An Optimization Modulo331

Theories-based Approach to Cumulative Scheduling with Delays", June 2025. doi:10.5281/332

zenodo.15741417.333

15 Tanner Nixon, Robert M. Curry, and Phanuel Allaissem B. Mixed-integer programming334

models and heuristic algorithms for the maximum value dynamic network flow scheduling335

problem. Comput. Oper. Res., 175:106897, 2025.336

16 Ontario Onsite Wastewater Association. Flow balancing and flow equaliza-337

tion, 2020. URL: https://www.oowa.org/wp-content/uploads/2022/05/FINAL-OOWA_GD_338

Flow-Balancing-07162020.pdf.339

17 Gaetano Patti, Lucia Lo Bello, and Luca Leonardi. Deadline-aware online scheduling of TSN340

flows for automotive applications. IEEE Trans. Ind. Informatics, 19(4):5774–5784, 2023.341

18 Roberto Sebastiani and Patrick Trentin. Optimathsat: A tool for optimization mod-342

ulo theories. J. Autom. Reason., 64(3):423–460, 2020. URL: https://doi.org/10.1007/343

s10817-018-09508-6, doi:10.1007/S10817-018-09508-6.344

19 Patrick Trentin. Optimization Modulo Theories with OptiMathSAT. PhD thesis, University of345

Trento, Italy, 2019.346

20 Edward P. K. Tsang. Constraint based scheduling: Applying constraint programming to347

scheduling problems. J. Sched., 6(4):413–414, 2003.348

CVIT 2016

http://dx.doi.org/10.1002/9781118166000
https://doi.org/10.1002/9781118166000
https://doi.org/10.1007/978-3-540-78800-3_24
https://www.gurobi.com
https://www.gurobi.com
https://www.gurobi.com
https://doi.org/10.5281/zenodo.15741417
https://doi.org/10.5281/zenodo.15741417
https://doi.org/10.5281/zenodo.15741417
https://www.oowa.org/wp-content/uploads/2022/05/FINAL-OOWA_GD_Flow-Balancing-07162020.pdf
https://www.oowa.org/wp-content/uploads/2022/05/FINAL-OOWA_GD_Flow-Balancing-07162020.pdf
https://www.oowa.org/wp-content/uploads/2022/05/FINAL-OOWA_GD_Flow-Balancing-07162020.pdf
https://doi.org/10.1007/s10817-018-09508-6
https://doi.org/10.1007/s10817-018-09508-6
https://doi.org/10.1007/s10817-018-09508-6
https://doi.org/10.1007/S10817-018-09508-6

	1 Introduction
	2 Preliminaries
	2.1 Cumulative Resource-Constrained Scheduling with Delays
	2.1.1 Optimal Schedules

	2.2 OMT and MIP

	3 The OMT Model
	3.1 Constraints in the OMT and MIP Models
	3.2 Optimal Schedules with OMT

	4 Experimental Evaluation
	4.1 Results

	5 Conclusions

