
Enumerating All Boolean Matches1

Alexander Nadel #Ñ �2

Intel Corporation, Israel and Faculty of Data and Decision Sciences, Technion, Haifa, Israel3

Yogev Shalmon #Ñ �4

Intel Corporation, Israel and Faculty of Data and Decision Sciences, Technion, Haifa, Israel5

Abstract6

Boolean matching, a fundamental problem in circuit design, determines whether two Boolean circuits7

are equivalent under input/output permutations and negations. While most works focus on finding8

a single match or proving its absence, the problem of enumerating all matches remains largely9

unexplored, with BooM being a notable exception. Motivated by timing challenges in Intel’s library10

mapping flow, we introduce EBat — an open-source tool for enumerating all matches between single-11

output circuits. Built from scratch, EBat reuses BooM’s SAT encoding and introduces novel high-level12

algorithms and performance-critical subroutines to efficiently identify and block multiple mismatches13

and matches simultaneously. Experiments demonstrate that EBat substantially outperforms BooM’s14

baseline algorithm, solving 3 to 4 times more benchmarks within a given time limit. EBat has been15

productized as part of Intel’s library mapping flow, effectively addressing the timing challenges.16

2012 ACM Subject Classification Mathematics of computing → Solvers17

Keywords and phrases Boolean Matching, All-Boolean-Matching, Enumeration, SAT, Generalization18

Digital Object Identifier 10.4230/LIPIcs.SAT.2025.519

Supplementary Material Software: https://github.com/yogevshalmon/ebat20

1 Introduction21

Boolean matching is a pivotal problem of determining whether two Boolean circuits are22

equivalent under the permutation and negation of inputs and outputs. Boolean matching23

is widely applied in practice, including in library mapping (also known as library binding24

or technology mapping) [2, 11], synthesis [4, 14], Engineering Change Order (ECO) [8],25

equivalence checking [12] and protection against hardware Trojans [13]. Considerable attention26

has been devoted to solving Boolean matching, highlighted by its inclusion as a CAD contest27

problem at ICCAD’23 [3]. Existing solving methods can be categorized into canonical-28

form- [2, 12], signature- [15, 1], and SAT-based [10, 9]. While almost all existing works29

focus on finding a single match or proving its nonexistence, this paper is dedicated to the30

all-Boolean-matching problem of enumerating all the matches.31

In this paper, we focus on the SAT-based approach to Boolean matching, building our32

new algorithms and encoding upon the foundational work of BooM [10, 9].33

To our knowledge, BooM is the only Boolean matching approach capable of enumerating all34

matches. We refer to BooM’s all-Boolean-matching algorithm as BooMS. At a high level, BooMS35

sifts through a given bucket of mappings using a mismatch-sifter, filtering out mismatches36

and collecting the remaining mappings in a new bucket containing only matches, which are37

then reported to the user.38

We focus on combinational circuits with a single output. Following [10], we identify39

three equivalence types: Permutation-Equivalence (P-Equivalence), Negation-Permutation-40

Equivalence (NP-Equivalence), and Negation-Permutation-Negation-Equivalence (NPN-41

Equivalence). For single-output circuits, NPN-equivalence reduces to two NP-equivalence42

checks. Thus, we concentrate on P-equivalence and NP-equivalence.43

© Alexander Nadel and Yogev Shalmon;
licensed under Creative Commons License CC-BY 4.0

28th International Conference on Theory and Applications of Satisfiability Testing (SAT 2025).
Editors: Jeremias Berg and Jakob Nordström; Article No. 5; pp. 5:1–5:3

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:alexander.nadel@intel.com
http://www.cs.tau.ac.il/research/alexander.nadel
https://orcid.org/0000-0003-4679-892X
mailto:yogev.shalmon@intel.com
https://yogevshalmon.github.io/
https://orcid.org/0009-0004-3720-4004
https://doi.org/10.4230/LIPIcs.SAT.2025.5
https://github.com/yogevshalmon/ebat
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2 Enumerating All Boolean Matches

2 Our Motivation44

This work was driven by a critical industrial need identified by engineers at Intel. Intel45

engineers found that standard Boolean matching-based library mapping often failed to meet46

timing requirements due to significant delay variances in matched pairs. They needed a tool47

to enumerate all possible Boolean matches to identify the best match with minimal delay48

variance. Notably, the timing tool calculates a complex function that varies according to49

project specifications, making it infeasible to express the problem using an optimization50

paradigm like MaxSAT.51

In this paper, we present EBat, our novel open-source tool developed to enumerate all52

possible Boolean matches or prove their absence, fulfilling the engineers’ requirement. EBat53

has been productized and is currently in active use at Intel for library mapping.54

3 Our Contributions55

Our solution, EBat, implemented from scratch, introduces novel all-Boolean-matching al-56

gorithms based on the following insights.57

The feasibility of all-Boolean-matching algorithms hinges on efficiently identifying and58

blocking multiple mismatches and matches simultaneously, a capability essential for scaling to59

real-world instances. We observed a fundamental limitation in the original BooMS algorithm:60

it enumerates, extends, and blocks only mismatches. In the following, we describe our61

contributions, starting with a new algorithm that addresses the above limitation:62

Our first contribution is a novel algorithm, named the picker (EBatP), which enumerates63

not only mismatches but also matches. Its core capability is explicitly visiting and64

strengthening matches using minimal unsatisfiable core extraction [6, 5] to cover and65

block multiple matches simultaneously. We observed that EBatP overcame a performance66

bottleneck and solved more instances, but only in the NP-equivalence setting. This67

limitation appears to stem from the lack of witness extension in the P-equivalence context.68

Witness extension—generalizing a single mismatch into multiple—was omitted following69

BooMS approach, as applying it in P-equivalence could compromise correctness.70

Our second contribution is a new witness extension algorithm for P-equivalence,71

achieved through a dedicated modification of SAT solver heuristics. With this approach,72

we successfully broke the performance bottleneck for P-equivalence as well.73

Our third contribution is a novel high-level “sift-and-pick” algorithm, EBatC, which74

combines BooMS and EBatP.75

Our fourth contribution is a more efficient witness extension for NP-equivalence using76

a new generalization algorithm, inspired by our recent results in solution enumeration for77

circuits (AllSAT-CT) [7], which outperforms BooM’s witness extension method.78

Our fifth contribution is a novel, dedicated mismatch-blocking algorithm for P-79

equivalence.80

Finally, our sixth contribution comprises the implementation of all our algorithms and81

the baseline BooM algorithm in a new open-source tool, EBat. Despite the kind assistance82

of BooM’s authors, we could not get the original implementation to work, making EBat83

the only publicly available all-Boolean-matching tool.84

Experiments show that our algorithms solve 3 to 4 times more benchmarks than the85

baseline BooMS algorithm within EBat, for both P- and NP-equivalence, across a diverse86

benchmark set under a 60-second timeout.87

A. Nadel Y. Shalmon 5:3

References88

1 Afshin Abdollahi. Signature based boolean matching in the presence of don’t cares. In Limor89

Fix, editor, Proceedings of the 45th Design Automation Conference, DAC 2008, Anaheim, CA,90

USA, June 8-13, 2008, pages 642–647. ACM, 2008. doi:10.1145/1391469.1391635.91

2 Luca Benini and Giovanni De Micheli. A survey of boolean matching techniques for library92

binding. ACM Transactions on Design Automation of Electronic Systems, 2(3), 1997. doi:93

10.1145/264995.264996.94

3 Chung-Han Chou, Chih-Jen Jacky Hsu, Chi-An Rocky Wu, Kuan-Hua Tu, and Kei-Yong Khoo.95

Invited paper: 2023 iccad cad contest problem a: Multi-bit large-scale boolean matching. In96

2023 IEEE/ACM International Conference on Computer Aided Design (ICCAD), pages 1–4,97

2023. doi:10.1109/ICCAD57390.2023.10323797.98

4 Jason Cong and Yean-Yow Hwang. Boolean matching for lut-based logic blocks with applica-99

tions toarchitecture evaluation and technology mapping. IEEE Trans. Comput. Aided Des.100

Integr. Circuits Syst., 20(9):1077–1090, 2001. doi:10.1109/43.945303.101

5 Nachum Dershowitz, Ziyad Hanna, and Alexander Nadel. A scalable algorithm for minimal102

unsatisfiable core extraction. In Armin Biere and Carla P. Gomes, editors, Theory and103

Applications of Satisfiability Testing - SAT 2006, 9th International Conference, Seattle, WA,104

USA, August 12-15, 2006, Proceedings, volume 4121 of Lecture Notes in Computer Science,105

pages 36–41. Springer, 2006. URL: https://doi.org/10.1007/11814948_5, doi:10.1007/106

11814948_5.107

6 Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In Theory and Applications of108

Satisfiability Testing, 6th International Conference, SAT, Proceedings, 2003. doi:10.1007/109

978-3-540-24605-3_37.110

7 Dror Fried, Alexander Nadel, Roberto Sebastiani, and Yogev Shalmon. Entailing generalization111

boosts enumeration. In Supratik Chakraborty and Jie-Hong Roland Jiang, editors, 27th112

International Conference on Theory and Applications of Satisfiability Testing, SAT 2024,113

August 21-24, 2024, Pune, India, volume 305 of LIPIcs, pages 13:1–13:14. Schloss Dagstuhl -114

Leibniz-Zentrum für Informatik, 2024. doi:10.4230/LIPICS.SAT.2024.13.115

8 Shao-Lun Huang, Wei-Hsun Lin, Po-Kai Huang, and Chung-Yang Huang. Match and replace:116

A functional ECO engine for multierror circuit rectification. IEEE Trans. Comput. Aided Des.117

Integr. Circuits Syst., 32(3):467–478, 2013. doi:10.1109/TCAD.2012.2226456.118

9 Chih Fan Lai, Jie Hong R. Jiang, and Kuo Hua Wang. Boolean matching of function vectors119

with strengthened learning. In IEEE/ACM International Conference on Computer-Aided120

Design, Digest of Technical Papers, ICCAD, 2010. doi:10.1109/ICCAD.2010.5654215.121

10 Chih Fan Lai, Jie Hong R. Jiang, and Kuo Hua Wang. BooM: A decision procedure for122

Boolean matching with abstraction and dynamic learning. In Proceedings - Design Automation123

Conference, 2010. doi:10.1145/1837274.1837398.124

11 Alan Mishchenko, Supratik Chatterjee, Robert Brayton, Xiangjian Wang, and Tony Kam.125

Technology mapping with boolean matching, supergates and choices. Technical report, EECS126

Department, University of California, Berkeley, March 2005.127

12 Janett Mohnke, Paul Molitor, and Sharad Malik. Application of bdds in boolean matching128

techniques for formal logic combinational verification. Int. J. Softw. Tools Technol. Transf.,129

3(2):207–216, 2001. doi:10.1007/S100090100039.130

13 Pawel Swierczynski, Marc Fyrbiak, Christof Paar, Christophe Huriaux, and Russell Tessier. Pro-131

tecting against cryptographic trojans in fpgas. In 23rd IEEE Annual International Symposium132

on Field-Programmable Custom Computing Machines, FCCM 2015, Vancouver, BC, Canada,133

May 2-6, 2015, pages 151–154. IEEE Computer Society, 2015. doi:10.1109/FCCM.2015.55.134

14 Chaofan Yu, Lingli Wang, Chun Zhang, Yu Hu, and Lei He. Fast filter-based boolean matchers.135

IEEE Embed. Syst. Lett., 5(4):65–68, 2013. doi:10.1109/LES.2013.2280582.136

15 Juling Zhang, Guowu Yang, William N. N. Hung, and Jinzhao Wu. A canonical-based NPN137

boolean matching algorithm utilizing boolean difference and cofactor signature. IEEE Access,138

5:27777–27785, 2017. doi:10.1109/ACCESS.2017.2778338.139

SAT 2025

https://doi.org/10.1145/1391469.1391635
https://doi.org/10.1145/264995.264996
https://doi.org/10.1145/264995.264996
https://doi.org/10.1145/264995.264996
https://doi.org/10.1109/ICCAD57390.2023.10323797
https://doi.org/10.1109/43.945303
https://doi.org/10.1007/11814948_5
https://doi.org/10.1007/11814948_5
https://doi.org/10.1007/11814948_5
https://doi.org/10.1007/11814948_5
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.4230/LIPICS.SAT.2024.13
https://doi.org/10.1109/TCAD.2012.2226456
https://doi.org/10.1109/ICCAD.2010.5654215
https://doi.org/10.1145/1837274.1837398
https://doi.org/10.1007/S100090100039
https://doi.org/10.1109/FCCM.2015.55
https://doi.org/10.1109/LES.2013.2280582
https://doi.org/10.1109/ACCESS.2017.2778338

	1 Introduction
	2 Our Motivation
	3 Our Contributions

