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Abstract6

Boolean matching, a fundamental problem in circuit design, determines whether two Boolean circuits7

are equivalent under input/output permutations and negations. While most works focus on finding8

a single match or proving its absence, the problem of enumerating all matches remains largely9

unexplored, with BooM being a notable exception. Motivated by timing challenges in Intel’s library10

mapping flow, we introduce EBat — an open-source tool for enumerating all matches between single-11

output circuits. Built from scratch, EBat reuses BooM’s SAT encoding and introduces novel high-level12

algorithms and performance-critical subroutines to efficiently identify and block multiple mismatches13

and matches simultaneously. Experiments demonstrate that EBat substantially outperforms BooM’s14

baseline algorithm, solving 3 to 4 times more benchmarks within a given time limit. EBat has been15

productized as part of Intel’s library mapping flow, effectively addressing the timing challenges.16
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1 Introduction21

Boolean matching is a pivotal problem of determining whether two Boolean circuits are22

equivalent under the permutation and negation of inputs and outputs. Boolean matching23

is widely applied in practice, including in library mapping (also known as library binding24

or technology mapping) [2, 11], synthesis [4, 14], Engineering Change Order (ECO) [8],25

equivalence checking [12] and protection against hardware Trojans [13]. Considerable attention26

has been devoted to solving Boolean matching, highlighted by its inclusion as a CAD contest27

problem at ICCAD’23 [3]. Existing solving methods can be categorized into canonical-28

form- [2, 12], signature- [15, 1], and SAT-based [10, 9]. While almost all existing works29

focus on finding a single match or proving its nonexistence, this paper is dedicated to the30

all-Boolean-matching problem of enumerating all the matches.31

In this paper, we focus on the SAT-based approach to Boolean matching, building our32

new algorithms and encoding upon the foundational work of BooM [10, 9].33

To our knowledge, BooM is the only Boolean matching approach capable of enumerating all34

matches. We refer to BooM’s all-Boolean-matching algorithm as BooMS. At a high level, BooMS35

sifts through a given bucket of mappings using a mismatch-sifter, filtering out mismatches36

and collecting the remaining mappings in a new bucket containing only matches, which are37

then reported to the user.38

We focus on combinational circuits with a single output. Following [10], we identify39

three equivalence types: Permutation-Equivalence (P-Equivalence), Negation-Permutation-40

Equivalence (NP-Equivalence), and Negation-Permutation-Negation-Equivalence (NPN-41

Equivalence). For single-output circuits, NPN-equivalence reduces to two NP-equivalence42

checks. Thus, we concentrate on P-equivalence and NP-equivalence.43
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2 Our Motivation44

This work was driven by a critical industrial need identified by engineers at Intel. Intel45

engineers found that standard Boolean matching-based library mapping often failed to meet46

timing requirements due to significant delay variances in matched pairs. They needed a tool47

to enumerate all possible Boolean matches to identify the best match with minimal delay48

variance. Notably, the timing tool calculates a complex function that varies according to49

project specifications, making it infeasible to express the problem using an optimization50

paradigm like MaxSAT.51

In this paper, we present EBat, our novel open-source tool developed to enumerate all52

possible Boolean matches or prove their absence, fulfilling the engineers’ requirement. EBat53

has been productized and is currently in active use at Intel for library mapping.54

3 Our Contributions55

Our solution, EBat, implemented from scratch, introduces novel all-Boolean-matching al-56

gorithms based on the following insights.57

The feasibility of all-Boolean-matching algorithms hinges on efficiently identifying and58

blocking multiple mismatches and matches simultaneously, a capability essential for scaling to59

real-world instances. We observed a fundamental limitation in the original BooMS algorithm:60

it enumerates, extends, and blocks only mismatches. In the following, we describe our61

contributions, starting with a new algorithm that addresses the above limitation:62

Our first contribution is a novel algorithm, named the picker (EBatP), which enumerates63

not only mismatches but also matches. Its core capability is explicitly visiting and64

strengthening matches using minimal unsatisfiable core extraction [6, 5] to cover and65

block multiple matches simultaneously. We observed that EBatP overcame a performance66

bottleneck and solved more instances, but only in the NP-equivalence setting. This67

limitation appears to stem from the lack of witness extension in the P-equivalence context.68

Witness extension—generalizing a single mismatch into multiple—was omitted following69

BooMS approach, as applying it in P-equivalence could compromise correctness.70

Our second contribution is a new witness extension algorithm for P-equivalence,71

achieved through a dedicated modification of SAT solver heuristics. With this approach,72

we successfully broke the performance bottleneck for P-equivalence as well.73

Our third contribution is a novel high-level “sift-and-pick” algorithm, EBatC, which74

combines BooMS and EBatP.75

Our fourth contribution is a more efficient witness extension for NP-equivalence using76

a new generalization algorithm, inspired by our recent results in solution enumeration for77

circuits (AllSAT-CT) [7], which outperforms BooM’s witness extension method.78

Our fifth contribution is a novel, dedicated mismatch-blocking algorithm for P-79

equivalence.80

Finally, our sixth contribution comprises the implementation of all our algorithms and81

the baseline BooM algorithm in a new open-source tool, EBat. Despite the kind assistance82

of BooM’s authors, we could not get the original implementation to work, making EBat83

the only publicly available all-Boolean-matching tool.84

Experiments show that our algorithms solve 3 to 4 times more benchmarks than the85

baseline BooMS algorithm within EBat, for both P- and NP-equivalence, across a diverse86

benchmark set under a 60-second timeout.87
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