Integer Linear Programming Preprocessing for
Maximum Satisfiability

Jialu Zhang &
Laboratoire MIS UR 4290, Université de Picardie Jules Verne, Amiens, France

Chu-Min Li &
Laboratoire MIS UR 4290, Université de Picardie Jules Verne, Amiens, France

Sami Cherif =
Laboratoire MIS UR 4290, Université de Picardie Jules Verne, Amiens, France

Shuolin Li =
Aix Marseille Univ, Université de Toulon, CNRS, LIS, Marseille, France

Zhifei Zheng =
Laboratoire MIS UR 4290, Université de Picardie Jules Verne, Amiens, France

—— Abstract

The Maximum Satisfiability problem (MaxSAT) is a major optimization challenge with numerous
practical applications. In recent MaxSAT evaluations, most MaxSAT solvers have adopted an ILP
solver as part of their portfolios. This paper investigates the impact of Integer Linear Programming
(ILP) preprocessing techniques on MaxSAT solving. Experimental results show that ILP prepro-
cessing techniques help WMaxCDCL-OpenWbo1200, the winner of the MaxSAT evaluation 2024
in the unweighted track, solve 15 additional instances. Moreover, current state-of-the-art MaxSAT
solvers heavily use an ILP solver in their portfolios, while our proposed approach reduces the need
to call an ILP solver in a portfolio including WMaxCDCL or MaxCDCL.

2012 ACM Subject Classification Theory of computation — Constraint and logic programming
Keywords and phrases Maximum Satisfiability, ILP, Preprocessing.

Digital Object Identifier 10.4230/LIPIcs.SATCPDP.2025.23

1 Introduction

Maximum Satisfiability (MaxSAT) is a natural optimization extension of the Propositional
Satisfiability problem (SAT) [7]. While SAT consists of determining an assignment that
satisfies the clausal constraints in a given formula under Conjunctive Normal Form (CNF),
the goal in MaxSAT shifts to finding a solution satisfying the maximum number of clauses in
the formula. MaxSAT is harder to solve than SAT in theory and practice because it is more
difficult to find and prove optimal solutions [6, 14]. Many real-world optimization problems
can be formulated as MaxSAT instances, including scheduling [26], hardware and software
debugging [25], explainable artificial intelligence [11], and so on.

Algorithms for solving the MaxSAT problem can be broadly classified into exact algorithms
and heuristic algorithms. Exact algorithms, such as SAT-based (e.g., RC2 [12]), Branch
and Bound (e.g., MaxCDCL [16]), and Integer Linear Programming (ILP), find the optimal
solution and prove its optimality. In contrast, heuristic algorithms, such as stochastic local
search [24], can also be competitive, but they do not guarantee optimality. It is known that
ILP solvers, while they perform well on certain families of instances, are not competitive for
most industrial and random instances [3]. Therefore, the common practice observed in recent
MaxSAT evaluations!, particularly for the most efficient solvers, is to combine ILP solvers in a

! https://maxsat-evaluations.github.io/

© Jialu Zhang, Chu-Min Li, Sami Cherif, Shuolin Li and Zhifei Zheng;

licensed under Creative Commons License CC-BY 4.0

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:jialu.zhang@u-picardie.fr
https://orcid.org/0009-0009-6184-4649
mailto:chu-min.li@u-picardie.fr
https://orcid.org/0000-0002-6886-8434
mailto:sami.cherif@u-picardie.fr
https://orcid.org/0000-0003-4646-9982
mailto:shuolin.li@lis-lab.fr
https://orcid.org/0000-0002-5600-0777
mailto:zhifei.zheng@u-picardie.fr
https://orcid.org/0000-0003-4061-7518
https://doi.org/10.4230/LIPIcs.SATCPDP.2025.23
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2

Integer Linear Programming Preprocessing for Maximum Satisfiability

portfolio with other types of solvers to solve MaxSAT instances. For example, in the MaxSAT
evaluation 2024 [1], the total time limit to solve an instance is 3600s; EvalMaxSAT [5] first
runs the ILP solver SCIP [2] for 400s and then itself for 3200s; UWrMaxSat [19] runs SCIP
and itself alternatively each with a possibly different time limit, and compares its upper and
lower bounds with SCIP to improve them. As such, in all these portfolio MaxSAT solvers
taking advantage of ILP, the ILP solver is typically used independently in a portfolio setting,
requiring careful heuristic tuning, such as setting specific time limits.

In this paper, we propose a more integrated approach, where an ILP solver is used as a
preprocessing step, fully incorporated into the solving pipeline. Our approach consists of
first reading the CNF formula to convert it using integer linear constraints with an objective
function, then the ILP solver is called to simplify the problem, finally, the simplified integer
linear constraints are re-encoded into CNF to be solved using a MaxSAT solver. Experimental
results show that this approach allows solving more instances than the current state-of-the-art
MaxSAT solvers. Note that our approach does not require setting a heuristic time limit for
ILP solvers, allowing them to run until they fully preprocess the instance, which is different
from other approaches, such as EvalMaxSAT and UWrMaxSat.

The remainder of this paper is organized as follows. Section 2 introduces the MaxSAT
problem and ILP preprocessing techniques. Section 3 presents the methodology for integ-
rating ILP-based preprocessing techniques into MaxSAT solvers. Section 4 discusses our
experimental results. Finally, we conclude and discuss future work in Section 5.

2 Preliminaries

2.1 Maximum Satisfiability

Given a set of Boolean variables, a literal [is either a variable x or its negation —x, a clause
c is a disjunction of literals and can be represented as a set of literals. A formula F' in
Conjunctive Normal Form (CNF) is a conjunction of clauses. A variable z is assigned if it
takes a value in {True, False} (i.e., {1,0}). A literal z (—x) is assigned to True (False) if
variable x is assigned True, and to False (True) otherwise. A clause c is satisfied if at least
one of its literals is assigned to True. A formula F is satisfied if all its clauses are satisfied.
The SAT problem consists of finding an assignment that satisfies a given CNF formula F' [7].
MaxSAT is an optimization extension of SAT (more natural than MinSAT, another
optimization extension of SAT [10]), encompassing both Partial MaxSAT and Weighted
Partial MaxSAT [6, 14]. Partial MaxSAT divides clauses into hard clauses H and soft
clauses S, i.e., F = H U S, and the goal is to find an assignment that satisfies all hard
clauses in H while maximizing the number of satisfied soft clauses in S. In Weighted Partial
MaxSAT, a soft clause ¢ € S can be falsified with an integer penalty w,, also called the weight
of c. The objective for Weighted Partial MaxSAT is thus to find an optimal assignment that
maximizes the sum of weights of satisfied soft clauses while satisfying all the hard clauses.

2.2 Preprocessing Techniques

Preprocessing in problem-solving usually amounts to transforming a given instance into
an equivalent one that would potentially be easier to solve. In ILP solvers, preprocessing
techniques are a key factor to speed up problem-solving, which includes variable fixing, variable
aggregation, redundant constraint elimination, and other advanced inference mechanisms [22].
The variable fixing technique employs a probing algorithm that temporarily assigns a binary
variable to 0 or 1 and then propagates the resulting implications [2]. Variable aggregation

Zhang, Li, Cherif, Li, and Zheng

exploits equations and constraint relationships within the model, as well as cluster or
symmetry detection algorithms, to merge multiple variables into a single one. Meanwhile,
redundant constraint elimination checks the bounds of each constraint, removes constraints
that are proved to be satisfied by all variable values satisfying other constraints, or detects
constraints implying infeasibility of the problem [23].

In SAT and MaxSAT solvers, preprocessing techniques are broadly used to reduce the
number of variables and clauses, such as bounded variable elimination (BVE), failed literal
detection, unit propagation, and self-subsuming resolution [4, 8]. Clause vivification [15] can
also be used as preprocessing or inprocessing among hard clauses. There are also tools, such
as MaxPre [13], that integrate SAT and MaxSAT preprocessing techniques into a program.

A MaxSAT problem can be naturally converted into an ILP problem. Equations (1)-(4)
give an ILP model for the weighted partial MaxSAT problem F = H U S, where H (5) is
the set of hard (soft) clauses, respectively. V is the set of boolean decision variables in F'. A
binary variable z. is introduced for every soft clause ¢ € S with weight w,, a binary variable
Yz is introduced for each Boolean variable z in V', and a hard (soft) clause c is written as
H;VH} (S;VS]), where H (H;) is a disjunction of negative (positive) literals. Equation
(2) ensures that every hard clause is satisfied, and Equation (3) entails that if a soft clause
c is satisfied, then its weight w, can contribute to the objective function. However, the
encoding of an ILP problem into MaxSAT is not so straightforward, as many ILP constraints
require sophisticated techniques to be efficiently encoded into MaxSAT. Fortunately, tools
such as the PBLib Library [18] have been developed in the literature to facilitate these
transformations by providing efficient encoding techniques.

Objective: Maximize ch ‘ Ze (1)
cesS
Subject to: Z Yy + Z 1—yy)>1, VYeeH (2)
zeHS zeH;
zC§Zym+ Z(lfyz), Vee S (3)
zesSt z€S,
z. €{0,1}, VeelS; y,€{0,1}, VexeV (4)

3 Preprocessing a MaxSAT instance through ILP

We propose a methodology to integrate ILP preprocessing techniques into MaxSAT solvers.
This section presents our methodology as well as the variable and constraint encodings.

3.1 Methodology

Our three-stage methodology can be described as follows:

23:3

1. Preprocessing Stage: Given a MaxSAT instance (originInst), an ILP model (originM odel)

is constructed based on Equations (1) to (4). Preprocessing techniques are then applied
to originModel using an ILP solver, yielding a hopefully simplified model (simpModel).
The simpModel is subsequently encoded into a simplified MaxSAT instance (simplInst),
while the mapping between variables in originInst and simplnst is recorded in varM ap.
2. Solving Stage: If simplInst is "smaller" than originlnst, i.e., if simpInst contains
fewer variables and fewer hard clauses than originInst, a MaxSAT solver is applied to
solve simplInst to obtain an optimal solution (simpSol) of simpInst. Otherwise, the

SATCPDP-25

23:4

Integer Linear Programming Preprocessing for Maximum Satisfiability
Input @ Solve origininst by
a MaxSAT solver

[Convert to ILP model] Solve simplinst by impSol

a MaxSAT solver SImp>0

originModel

Reconstruct
the originSol

[Preprocess by SCIP]
varMap

simplnst
smaller than
originlnst?

originSol

Output

simpModel

[Encode simplified model }

1. Preprocessing Stage 2. Solving Stage 3. Reconstruction Stage

Figure 1 Integrating ILP preprocessing techniques into MaxSAT solvers

original instance (originInst) is solved by the MaxSAT solver. However, the definition
of “smaller” is debatable and deserves future study.

3. Reconstruction Stage: In this stage, the algorithm constructs an optimal solution
originSol for originInst with simpSol and varMap. This stage happens only when
simplInst is "smaller" than originInst.

The three stages are illustrated in Figure 1, in which the key aspect is to convert
stmpModel into simpInst. We first check the variables and constraints in simpM odel
and then try to encode them to MaxSAT. The encoding involves mapping variables from
stmpModel to simpInst, encoding constraints as hard clauses, and representing the objective
function as soft clauses. The details are described in the following subsections.

3.2 Variable Encoding

After preprocessing by an ILP solver, the original ILP model (originModel) encoding the
original MaxSAT instance is transformed into simpModel, in which we distinguish three
types of binary variables: fixed, aggregated, and free. A fixed variable in simpM odel means
that it is assigned a fixed value because the other value is proven to falsify at least one
constraint in originModel. Algorithm 1 records the values of the fixed variables in varMap
(line 4) for the reconstruction of originSol.

A variable y, in simpM odel is referred to as aggregated when there is a relation of the
form y, = co + Y i, ¢i - y; in simpModel. This entails that the value of y, depends on
other variables y; for i = 1,...,n. In the case of a simple aggregation, i.e., n =1, cg =0
and ¢; € {1,—1}, we have y, = y; or y, = —y;. Algorithm 1 thus traverses the aggregation
chain and creates a unique new Boolean variable to represent all variables in the chain by
preserving their relations (lines 8-10). For example, consider three variables in simpM odel
with the aggregation relationships (y; = —w2) and (y2 = y3). In this case, only one new
Boolean variable v is created in simplInst to represent yi, y2 and ys, by implementing
the mapping {y1 — —w1,y2 — v1,y3 — v1} when transforming simpModel to simpInst,
which preserves (y; = —y2) and (y2 = y3). Together with variable fixing, this operation
often significantly reduces the number of variables in simpInst w.r.t. origininst, as will be
showcased empirically in Section 4. In the general case, Algorithm 1 encodes the aggregation
constraint as a Pseudo-Boolean formula —y, + Z?:l ¢; - y; = —co and translates it into hard

Zhang, Li, Cherif, Li, and Zheng

Algorithm 1 Encoding Variables

Require: originlnst, ssmpModel, var Map
1: for each variable x in origininst do

2: Yz < corresponding variable of x in simpM odel

3: if y, is a fixed variable in simpModel then

4: varMap[z] < the fixed value of y, in simpModel

5: else if y, is a free variable in simpM odel then

6: varMap[z] < new Boolean variable in simpInst

7 else if y, is a simple aggregated variable in simpModel then

8: Y, < final variable in the aggregation chain //y, should be a free variable
9: create varMap[z] if it was not created

10 varMaplz] < varMap(z) or —varMap(z) according to the aggregation relation
11: else if y, is a multiple aggregated variable in simpModel then

12: varMap|x] < create a new Boolean variable in simpInst

13: Encode the aggregation constraint with a Pseudo-Boolean encoding

14: end if

15: end for

clauses in simpInst (lines 12-13).
A variable y, is referred to as free if it is neither fixed nor aggregated. Algorithm 1
creates a new Boolean variable in simplnst for each free variable in simpModel (line 6).

3.3 Constraint Encoding

We use the SCIP solver [2] to preprocess originModel as it is an open-source mixed-integer
programming solver broadly used in MaxSAT evaluations. The obtained simpM odel usually
contains various types of constraints, as listed in Table 1. Logical OR and Logical AND
constraints are directly encoded into CNF. Setppc and Linear constraints are encoded into
CNF using the methods for at-most-one and pseudo-Boolean constraints in the PBLib library
[18], respectively. We use the default configuration in PBLib, allowing it to automatically
select the most suitable encoding (such as Binary Decision Diagrams (BDD) or Adder
Networks, among others) based on the properties of the constraints. The orbitope constraint,
which arises from the symmetry-breaking technique used in SCIP preprocessing, is not listed
in Table 1. Given the complexity of encoding the orbitope constraint in CNF, instances
containing it are directly handled by the MaxSAT solver.

Table 1 Encodings of different constraints in simpM odel

Constraint Formula Encoding
Logical OR 2;1 z; >1 (z1 Va2 V... V)
Logical AND [zi=vy (yV -z Vo Vozn) AN (Y Vo)
Setppc packing Z;l z; <1 at-most-one

Setppc partitioning at-most-one A(z1 Vx2 V...V xy,)

Z?:l z; =1

lhs < Z:.L:l w; - x; < rhs

Linear Pseudo-Boolean

23:5

SATCPDP-25

23:6

Integer Linear Programming Preprocessing for Maximum Satisfiability

The objective function of simpModel is f(/S) = Maximize) .4 w, - z,, where S is the

set of soft clauses, z; is the decision variable in stmpModel, and w; is the corresponding
coefficient. We encode f(/ $) into soft clauses using the following method: if a coefficient w; of

a decision variable z; is positive, then z; is added as a soft clause with weight w/c, otherwise,
—z,, is added with weight —w,,.

4 Experimental Results

We use state-of-the-art ILP and MaxSAT solvers for our experiments. More specifically,
SCIP (version 9.1.1) is used as the ILP solver for preprocessing [2]. For MaxSAT, we select
the top-performing solvers from the MaxSAT evaluation 2024. In the unweighted category,
the leading solvers are WMaxCDCL-OpenWbo1200 [20], MaxCDCL-OpenWbo300 [9], and
UWrMaxSat-SCIP-MaxPre [19], which are ranked as the top three. In the weighted category,
the top three solvers include CASHWMaxSAT-DisjCom-S6 [21], UWrMaxSat-SCIP [19], and
EvalMaxSAT [5]. The benchmark MaxSAT instances are sourced from the unweighted and
weighted categories of MaxSAT evaluations from 2019 to 2024 (MS19-MS24 and WMS19-
WMS24, respectively). To avoid counting instances twice in the table below, we removed
from (W)MSk for k£ > 19 the instances also occurring in previous years from 2019. The
computations are performed on an AMD EPYC 7502 Processor (2.5GHz) and 31GB of RAM
under Linux. Each solver is allocated 3600 seconds to solve an instance, as in MaxSAT
evaluations, including preprocessing.

Table 2 compares the number of solved instances by each solver with the SCIP pre-
processing (+simp) and without. We report the number of instances solved without the
SCIP preprocessing and, between parentheses, we indicate the number of additional in-
stances solved with the preprocessing both within the same 3600s timeout. For example,
MaxCDCL-OpenWbo300 solves 1660 instances in total without the SCIP preprocessing, but
1676 instances in total with the SCIP preprocessing within 3600s. Figure 2 presents the
number of solved instances along with their CPU time costs for each solver.

WMaxCDCL-OpenWbo1200 (MaxCDCL-OpenWbo300) runs OpenWho [17] for 1200s
(300s) followed by WMaxCDCL (MaxCDCL) for 2400s (3300s) to solve an instance. They
do not use SCIP in their portfolios. In the unweighted category, the SCIP preprocessing
significantly improves their performance, allowing them to solve 15 (resp. 16) additional
instances. This technique also allows MaxCDCL-OpenWbo300 to bridge the gap with

Table 2 Number of instances solved by each solver within 3600s with (+simp) or without the
SCIP preprocessing in each subset of instances. The highlighted solvers use SCIP in their portfolios.

Unweighted category MS19 MS20 MS21 MS22 MS23 MS24 Total

#Instances 599 401 448 254 260 247 2209

SCIP 235 203 208 102 118 88 954
WMaxCDCL-OpenWho1200(+simp) 446(+10) 306(+1) 339(+2) 183(+1) 177(+1) 199(0) 1650(+15)
MaxCDCL-OpenWbo300(+simp) 441(4+10) 315(-1) 344(+4) 186(+1) 177(+1) 197(+1) 1660(+16)
UWrMaxSat-SCIP-Maxpre(+simp) 445(0) 329(0) 352(0) 183(0) 188(+2) 175(+1) 1672(+3)

Weighted category WMS19 WMS20 WMS21 WMS22 WMS23 WMS24 Total

#Instances 586 433 491 291 218 204 2223

SCIP 228 239 238 122 117 101 1045
CASHWMaxSAT-DisjCom-S6(+simp) 410(+4) 349(-1) 405(-2) 214(0) 167(+1) 151(0) 1696(+2)
UWrMaxSat-SCIP (+simp) 404(-3) 347(0) 398(0) 209(+1) 163(0) 146(0) 1667(-2)

EvalMaxSAT (+simp) 390(+3) 338(+1) 396(-2) 212(+1) 162(+1) 148(+1) 1646(+5)

Zhang, Li, Cherif, Li, and Zheng

3500 WMaxCDCL-OpenWbo1200 A f
3000 WMaxCDCL-OpenWbo1200+simp] A
—— MaxCDCL-OpenWbo300 I 7 i
25007 ---- MaxCDCL-OpenWbo300+simp ,'
- — . . r
@ 2000 UWrMaxSat-SCIP-MaxPre .
£ ---- UWrMaxSat-SCIP-MaxPre+simp
> 1500
o
O
1000
500
0
1000 1100 1200 1300 1400 1500 1600 1700
Solved instances
(a) Unweighted category (MS19-MS24)
3500 CASHWMaxSAT-DisjCom-S6
3000 CASHWMaxSAT-DisjCom-S6+simp
—— UWrMaxSat-SCIP
= 25001 ---- UWrMaxSat-SCIP+simp
b —— EvalMaxSAT
2 2000
,g ---- EvalMaxSAT+simp
> 1500
a
o
1000
500
Looooom=====2
0

1000 1100 1200 1300 1400 1500 1600 1700
Solved instances

(b) Weighted category (WMS19-WMS24)

Figure 2 Number of solved instances vs. CPU time

UWrMaxSat-SCIP-Maxpre, by solving 1 instance more than UWrMaxSat-SCIP-Maxpre with
the technique, but 12 instances less than UWrMaxSat-SCIP-Maxpre without the technique.

These results are significant because MaxSAT solving has reached a high level of maturity,
making further improvements increasingly hard. In fact, in the unweighted category of the
MaxSAT evaluation 2024, the winner WMaxCDCL-OpenWbo1200 solves only 2 instances
more than MaxCDCL-OpenWbo300, which solves in turn 4 instances more than UWrMaxSat-
SCIP-Maxpre, out of a total of 553 instances.

In the weighted category, CashWMaxSAT and UWrMaxSAT are already deeply combined
with SCIP in their portfolio settings. The SCIP preprocessing does not improve or deteriorate
their performance significantly. For EvalMaxSAT, which applies SCIP during 400s only
to instances for which the weight of each soft clause is under 5,000,000, the effect of the
SCIP preprocessing is still positive. These results suggest that the SCIP preprocessing is
compatible with a portfolio running SCIP as an entire solver.

To analyse the impact of preprocessing, we partition the MaxSAT instances into 4 groups:
"Smaller", "Bigger", "Failed", and "Skipped". An instance is in the "Smaller" or "Bigger" group
if simplnst is created. If simplnst contains fewer variables and fewer hard clauses than
originInst, the instance is in the "Smaller" group. Otherwise, it is in the "Bigger" group. An
instance is in the "Failed" or "Skipped" group if simplInst is not created. It is in the "Failed"
group if the SCIP preprocessing produces a constraint type not listed in Table 1, and in
the "Skipped" group if originInst contains more than 200,000 variables or 1,000,000 clauses,
for which the SCIP preprocessing is not performed. In our experiments, each MaxSAT
solver solves the simplified instance simplInst only if the instance is in the "Smaller" group.

23:7

SATCPDP-25

23:8

Integer Linear Programming Preprocessing for Maximum Satisfiability

Table 3 Statistics of four groups of instances w.r.t. the SCIP preprocessing.

Unweighted category (MS19-MS24) Weighted category (WMS19-WMS24)

States Smaller Bigger Failed Skipped Smaller Bigger Failed Skipped
#Instances 1085 436 182 506 980 508 201 534
PreprocessingTime 15.36s 30.0s 6.20s - 14.26s 19.65s 24.86s -
FizedVarsRate 18.66% 3.64% 22.81% - 19.61% 16.30% 43.48% -
AggregatedV arsRate 26.92% 21.52% 30.56% - 27.68% 18.36% 29.67% -
simpleAggregationRatio 99.49% 79.54% - - 99.22% 96.64% - -

Table 4 Number of instances solved by WMaxCDCL-OpenWbo1200 (WMO+-simp) or MaxCDCL-
OpenWbo300 (MO+simp) with the SCIP solver as a portfolio.

Unweighted category MS19 MS20 MS21 MS22 MS23 MS24 Sum
WMO+simp(+S4/+S1) 456(+4/4+6) 307(+2/43) 341(-2/+2) 184(-1/0) 178(+1/0) 199(+1/+1) 1665(+5/+12)
MO+simp(+S4/+S1) 451(+6/+8) 314(+3/+4) 348(-4/0) 187(-2/-1) 178(+2/+2) 198(+2/+1) 1676(+7/+14)
Weighted category WMS19 WMS20 WMS21 WMS22 WMS23 WMS24 Sum
WMO+simp(+84/+S1) 392(+2/+1) 341(-2/+1) 399(0/0) 209(+1/+1) 154(0/0) 147(-1/0) 1642(0/+3)

Otherwise, it is the original instance that is solved. Table 3 shows the statistics of these four
groups of instances. We see that the SCIP preprocessing time is negligible compared to the
total allocated time of 3600s (less than 1%), and the percentage of fixed (FizedV arsRate)
or aggregated (AggregatedV arsRate) over all variables in originM odel is significant, and
the percentage of simple aggregation variables (simpleAggregationRatio, see lines 8-10 of
Algorithm 1) over all aggregated variables is very high (99% for the "Smaller" instances).

Finally, we investigate the relation between a portfolio running SCIP as an entire solver and
the SCIP preprocessing, by designing four new portfolios: WMO+simp+S4 (WMO+simp+S1)
runs SCIP as an entire solver for 400s (100s), then WMaxCDCL-OpenWbo1200 with the
SCIP preprocessing for 3200s (3500s); MO+simp+S4 and MO+simp+S1 are similar but use
MaxCDCL instead of WMaxCDCL. Table 4 compares the results of the portfolios with or
without SCIP as an entire solver. We see that the versions running SCIP for 100s give very
good results, allowing us to solve 12, 14, and 3 more instances, respectively. But the versions
running SCIP 400s give less good results. These results show that the SCIP preprocessing
does not yet completely bridge the gap due to SCIP as an entire solver in a portfolio, but it
significantly reduces the need to call it as an entire solver. Recall that running SCIP 400s as
an entire solver in a portfolio means that we generally lose 400s for most instances for which
SCIP is not effective, but we just lost 100s if we run SCIP 100s in a portfolio.

5 Conclusion

This paper investigates the impact of ILP preprocessing techniques on MaxSAT solving.
The experimental results show that the ILP preprocessing techniques enable WMaxCDCL-
OpenWbo1200, the winner of the MaxSAT evaluation 2024 in the unweighted track, to solve
15 additional instances in this track. They also show that the ILP preprocessing reduces
the need to call the ILP solver in a portfolio including WMaxCDCL or MaxCDCL, because
running SCIP 100s gives much better results than running 400s. Future work includes
supporting more constraints to enable simplifying more instances and trying more encoding
methods for constraints in the preprocessed ILP model. It would also be relevant to enhance
the efficiency of the MaxSAT solver by fine-tuning the heuristic parameters.

Zhang, Li, Cherif, Li, and Zheng

—— References

1

10
11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

MazSAT FEvaluation 2024: Solver and Benchmark Descriptions. Department of Computer
Science, University of Helsinki, Finland, 2024.

Tobias Achterberg. SCIP: solving constraint integer programs. Mathematical Programming
Computation, 1(1):1-41, July 20009.

Carlos Ansétegui and Joel Gabas. Solving (weighted) partial maxsat with ILP. In Integration
of AI and OR Techniques in Constraint Programming, 2013.

Josep Argelich, Chu Min Li, and Felip Manya. A preprocessor for max-sat solvers. In SAT
2008, pages 1520, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

Florent Avellaneda. Evalmaxsat 2024. MaxzSAT Evaluation 2024 Solver and Benchmark
Descriptions, page 8, 2024.

Fahiem Bacchus, Matti Jarvisalo, and Ruben Martins. Mazximum Satisfiability, pages 929 —
991. Frontiers in Artificial Intelligence and Applications. Netherlands, 2 edition, 2021.

A. Biere, M. Heule, and H. van Maaren. Handbook of Satisfiability: Second Edition. Frontiers
in Artificial Intelligence and Applications. IOS Press, 2021.

Armin Biere, Matti Jarvisalo, and Benjamin Kiesl. Preprocessing in SAT Solving, pages 391 —
435. Frontiers in Artificial Intelligence and Applications. Netherlands, 2 edition, 2021.

J. Coll D. Habet F. Manya C. M. Li, S. Li and K. He. Maxcdcl in maxsat evaluation 2024.
MaxSAT Evaluation 2024 Solver and Benchmark Descriptions, pages 15-16, 2024.

Z. Quan C.-M. Li, F. Manya and Z. Zhu. Exact minsat solving. In SAT-2010, pages 363-368.
Alexey Ignatiev and Joao Marques-Silva. Xai-mindset2: Explainable ai with maxsat. MazSAT
Evaluation 2018: Solver and Benchmark Descriptions, page 43, 2018.

Alexey Ignatiev, Antonio Morgado, and Joao Marques-Silva. RC2: an Efficient MaxSAT
Solver. Journal on Satisfiability, Boolean Modeling and Computation, 11(1):53-64, 2019.
Tuukka Korhonen, Jeremias Berg, Paul Saikko, and Matti Jarvisalo. MaxPre: An Extended
MaxSAT Preprocessor. In SAT 2017, volume 10491, pages 449-456. 2017.

Chu Min Li and Felip Manya. Chapter 23. MaxSAT, Hard and Soft Constraints. In Handbook
of Satisfiability, Frontiers in Artificial Intelligence and Applications. , February 2021.
Chu-Min Li, Fan Xiao, Mao Luo, Felip Manya, Zhipeng Lii, and Yu Li. Clause vivification by
unit propagation in CDCL SAT solvers. Artificial Intelligence, 279:103197, 2020.

Chu-Min Li, Zhenxing Xu, Jordi Coll, Felip Manya, Djamal Habet, and Kun He. Combining
Clause Learning and Branch and Bound for MaxSAT. CP 2021, 210:38:1-38:18, 2021.
Ruben Martins, Vasco Manquinho, and Inés Lynce. Open-wbo: A modular maxsat solver,. In
SAT 2014, pages 438—445, Cham, 2014. Springer International Publishing.

Tobias Philipp and Peter Steinke. Pblib — a library for encoding pseudo-boolean constraints
into cnf. In SAT 2015, pages 9-16, Cham, 2015. Springer International Publishing.

Marek Piotréw. Uwrmaxsat entering the maxsat evaluation 2024. MaxSAT Evaluation 2024
Solver and Benchmark Descriptions, pages 27-28, 2024.

J. Coll D. Habet F. Manya S. Li, C. M. Li and K. He. Wmaxcdcl in maxsat evaluation 2024.
MazxSAT Evaluation 2024 Solver and Benchmark Descriptions, pages 17-18, 2024.

S. Cai J. Li W. Zhu S. Pan, Y. Wang and M. Yin. Cashwmaxsat-disjcad: Solver description.
MaxzSAT Evaluation 2024 Solver and Benchmark Descriptions, page 25, 2024.

M. W. P. Savelsbergh. Preprocessing and Probing Techniques for Mixed Integer Programming
Problems. ORSA Journal on Computing, 6(4):445-454, November 1994.

Z. Gu E. Rothberg T. Achterberg, R. Bixby and D. Weninger. Presolve reductions in mixed
integer programming. INFORMS Journal on Computing, 32, 11 2019.

Dave A. D. Tompkins and Holger H. Hoos. Ubcsat: An implementation and experimentation
environment for sls algorithms for sat and max-sat. In SAT 2005, pages 306—-320, 2005.

J. Marques-Silva Y. Chen, S. Safarpour and A. G. Veneris. Automated design debugging with
maximum satisfiability. IEEE Transactions on Computer, 29:1804-1817, 2010.

Zhifei Zheng, Sami Cherif, and Rui Sa Shibasaki. Optimizing power peaks in simple assembly
line balancing through maximum satisfiability. In ICTAI 2024, pages 363-370. IEEE, 2024.

23:9

SATCPDP-25

	1 Introduction
	2 Preliminaries
	2.1 Maximum Satisfiability
	2.2 Preprocessing Techniques

	3 Preprocessing a MaxSAT instance through ILP
	3.1 Methodology
	3.2 Variable Encoding
	3.3 Constraint Encoding

	4 Experimental Results
	5 Conclusion

