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Abstract
Identifying the maximum common induced subgraph (MCIS) between two graphs is an NP-hard
problem. The McSplit algorithm is a prominent method for solving the MCIS problem and uses a
branch-and-bound (BnB) framework. Several extensions have been developed to improve McSplit’s
branching strategy using reinforcement learning (RL). However, the effectiveness of the bounding
strategy is crucial for efficiently pruning unpromising branches and speeding up the search. This
research presents a stricter upper bound based on an analysis of McSplit’s partitions and introduces
an RL approach that activate it in the most promising areas of the search.
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1 Introduction

Graphs are widely used in real-world applications due to their ability to model complex
structures [2, 5, 4, 1]. Identifying common patterns between such graphs is a key challenge in
graph theory. The MCIS problem involves finding two induced subgraphs from given graphs
G and H that are isomorphic and contain the most vertices [3].

Various exact algorithms have been developed to solve the MCIS problem, particularly
the McSplit algorithm [7], which uses heuristics for branching and bounding to enhance
performance. Recent developments include RL enhancements like McSplit+LL [8] and
McSplit+DAL [6], which aim to optimize vertex pair selection (i.e., branching) in McSplit.
Unlike the existing RL extensions, we proposes a new approach to enhance upper bound
estimation of the McSplit algorithm. The key contributions include: 1) A tighter upper
bound using graph structural properties, which improves pruning efficiency while maintaining
exactness and 2) A dynamic RL framework which activates the proposed bound computation
in most potential areas in the search.
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2 A New Upper Bound

We propose a tighter upper bound for the MCIS problem compared to McSplit’s bound,
which reduces the search space for BnB algorithms.

Let G be a simple, graph with vertices V pGq and edges EpGq. For a vertex subset
V 1 Ď V pGq, GrV 1s denotes the induced subgraph of G using V 1. Consider a mapping M “

tpv1, u1q, . . . , pvk, ukqu, where Vk “ tv1, . . . , vku Ď V pGq and Uk “ tu1, . . . , uku Ď V pHq.
Here, GrVks and HrUks induced subgraphs are isomorphic. The McSplit algorithm partition
the vertices of G and H (not in M) based on their connections to the mapped vertices. This
partitioning ensures that after selecting a new pair pvk`1, uk`1q, the subgraphs GrVk`1s and
HrUk`1s remain isomorphic. Each partition is referred to as a bidomain, denoted as xVl, Uly

and set of all bidomains denoted as PGH .
In the McSplit algorithm, they use maximum size of |Vl| and |Ul| to find the maximum

number of possible vertex pairs to be added to the current subgraph from a bidomain xVl, Uly.
The bound calculation of McSplit is too generous. For instance, if GrVls is a clique of five
vertices (K5) and HrUls is the complement graph (K̄5), the size of their maximum common
subgraphs is one, which is significantly smaller than minp|Vl|, |Ul|q estimated in the bound.
So, the proposed bound uses degree sequences of subgraphs GrVls and HrUls to estimate the
maximum common subgraphs, rather than just the sizes |Vl| and |Ul| as in McSplit because
degree sequences offer more structural insight than merely considering graph sizes.

Let M˚pG, Hq denote a maximum-cardinality mapping between two graphs G and H,
and DegpGq the sequence of vertex degrees in G in ascending order and dGpvq denote the
degree of a vertex v in G. The degree sum of G is defined as dpGq “

řn
i“1 dGpviq. We use Ḡ

to denote the complement graph of a graph G. We derive the following.

§ Theorem 1. Let |V pGq| ď |V pHq| and DegpGq “ pdGpv1q, . . . , dGpvnqq. If
(1)

řk
i“1 dGpviq ´

řn
j“k`1 dGpvjq ą dpHq, or

(2)
řn

j“n´k´1 dḠpvjq ´
řn´k

i“1 dḠpviq ą dpH̄q

then |M˚pG, Hq| ď k ´ 1, where dḠpviq “ |V pGq| ´ dGpviq ´ 1 for i “ 1, . . . , n.

Based on Theorem 1, we define the dividing number k of graphs G and H as the smallest
number in r1, ns satisfying Case (1) or Case (2). It can be shown that Cases (1) and (2)
cannot both hold and only occur for k ą n{2.

The bound in Theorem 1 is tighter than McSplit’s. We define the bound gap δGH as the
difference between McSplit’s bound and that in Theorem 1. If a dividing number k exists
then δGH “ n ´ k ` 1, otherwise δGH “ 0.

For any bidomain xVl, Uly P PGH , δ (the subscript is omitted) refers to the bound gap of
GrVls and HrUls. This gives us the following new bound where we call it as degree sequence
bound (DSB): UBdsb Ð |M | `

ř

xVl,UlyPPGH
minp|Vl|, |Ul|q ´ δ.

3 Learning-based Bounding Heuristic

Applying the proposed bound all the time is inefficient as the computation time of the
proposed bound is higher than the McSplit bound. So, we suggest incorporating an RL agent
that determine when to apply the tighter bound to maximize pruning efficiency by utilizing
the new bound in search areas with high pruning potential, .

Let Pp¨q represent powersets and ϕ a property of bidomains. A ϕ-activation function is
defined as λ : PpV pGqqˆPpV pHqq Ñ tactive, inactiveu, where λpV 1, U 1q “ active if xV 1, U 1y

satisfies property ϕ. At each branching step, PGH includes a subset of active bidomains,
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P :

GH “ txVl, Uly P PGH | λpVl, Ulq “ activeu. The reward for actions on PGH is based
on the estimated bound gap between McSplit and the new bound for active bidomains:
RpVl, Ulq “ δGrVlsHrUls.

Each bidomain has value function, SpVl, Ulq that is initialized to 1 and updated with a
historical average weighted by α P r0, 1s: SpVl, Ulq Ð p1 ´ αqSpVl, Ulq ` αRpVl, Ulq. For all
active bidomains, the score for SpPGHq is defined as: SpPGHq Ð

ř

xVl,UlyPP :

GH
SpVl, Ulq. At

each branching step, the algorithm checks the condition, UB ´ SpPGHq ď |incumbent| to
decide on computing new bounds. If true, the new bounds are computed, and rewards and
value scores are updated; otherwise, McSplit is used without changes.

4 Experiments

Experiments demonstrate that our approach outperforms McSplit and its variants in overall
execution time, due to significant branch reduction. By applying our new bound, McSplit
solves 3.41% more cases than the previous version, and identifies larger common subgraphs
for unsolved instances. We also show that the bound closely approximates the maximum
reduction achievable by any bound operating on bidomains alone.
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