
Symmetry Breaking in the Subgraph Isomorphism1

Problem2

Joseph Loughney #3

University of St Andrews, Scotland4

Ruth Hoffmann #5

University of St Andrews, Scotland6

Mun See Chang #7

University of St Andrews, Scotland8

Ciaran McCreesh #9

University of Glasgow, Scotland10

Abstract11

The Subgraph Isomorphism Problem (SIP) asks whether a given graph occurs within another.12

Despite being theoretically difficult, SIP can be solved quickly in practice. Symmetry breaking13

identifies symmetric states during the search process, and avoids searching all of them. Symmetry14

breaking has been shown to be useful in reducing runtimes for constraint programming, but there are15

many varied approaches with nuanced differences. It is unclear which symmetry breaking technique16

is "best" for SIP. We present various symmetry breaking techniques with a focus on influencing17

constraints to reflect the search order, and study the efficacy of each. Initial experimental data18

indicates significant speed-up over the solver with no symmetry breaking, and proposed improvements19

to basic techniques yield strong practical gains.20

2012 ACM Subject Classification Mathematics of computing Ñ Graph algorithms21

Keywords and phrases Graph algorithms, constraints programming, symmetry breaking22

Digital Object Identifier 10.4230/LIPIcs.CP.2025.023

Funding Mun See Chang: This work was supported by the International Science Partnerships Fund24

(ISPF) and the UK Research and Innovation [EP/Y000609/1].25

1 Introduction26

The Subgraph Isomorphism Problem (SIP) involves finding a “copy” of a smaller graph (called27

a pattern) inside a larger graph (target). The problem is a generalisation of several famous28

problems in graph theory (such as finding a Hamiltonian cycle [10]) and as such has various29

applications [15, 3, 2]. SIP is NP-complete [4], but in practice can be solved very quickly.30

State-of-the-art subgraph isomorphism solvers, such as the Glasgow Subgraph Solver (GSS)31

[9] achieve competitive runtimes by using constraint-programming style approaches.32

A technique which has seen improvements to efficiency of constraint-programming style33

algorithms for similar combinatorial problems is symmetry breaking [16, 5]. A common way34

of symmetry breaking is to fix an order on sets of symmetrical solutions and only searching35

for the ‘smallest’ in each set. This may reduce the search tree a significant amount, avoiding36

traversing branches that are equivalent to ones covered previously.37

Our aim is to investigate how to most effectively formulate and propagate symmetry38

breaking constraints in SIP with the objective of increasing efficiency, including how to add39

constraints during search instead of before it, and whether we should do so.40

Symmetry breaking in graph search problems has been studied before ([17, 16, 8, 6]), but41

previous attempts have been held back by overhead costs from identifying symmetries. Even42

so, they have found that symmetry breaking can lead to gains in a solver. Our contributions43

© Joseph Loughney, Ruth Hoffmann, Mun See Chang, Ciaran McCreesh;
licensed under Creative Commons License CC-BY 4.0

The 31st International Conference on Principles and Practice of Constraint Programming.
Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jpl9@st-andrews.ac.uk
https://orcid.org/0009-0003-5402-1835
mailto:rh347@st-andrews.ac.uk
https://orcid.org/0000-0002-1011-5894
mailto:msc2@st-andrews.ac.uk
https://orcid.org/0000-0003-2428-6130
mailto:ciaran.mccreesh@glasgow.ac.uk
https://orcid.org/0000-0002-6106-4871
https://doi.org/10.4230/LIPIcs.CP.2025.0
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:2 Symmetry Breaking in the Subgraph Isomorphism Problem

are methods which optimise the breaking of variable and value symmetries, and balance the44

trade-off between faster inferences and lower search node counts. Additionally, with the very45

efficient Dejavu library [1], we overcome the barrier of the identification overhead.46

We will begin in Section 2 by framing SIP as a Constraint Satisfaction Problem, define47

what it means for solutions to be ‘symmetric’, and how we might go about breaking these48

symmetries by adding constraints to the solver. In Section 3 we examine when best to49

create these constraints and add them to the solver. Then in Section 4 we will see two50

implementations of the general techniques discussed, followed by results in Section 5.51

2 SIP as a Constraint Satisfaction Problem52

A graph G “ pV, Eq is a set of vertices V together with a set of edges E consisting of 2-sets of53

V . A subgraph isomorphism from graph P “ pVP , EP q to graph T “ pVT , ET q is an injective54

function ϕ : VP Ñ VT such that edges are preserved. That is, pu, vq P EP ùñ pϕpuq, ϕpvqq P55

ET . Given two graphs P “ pVP , EP q and T “ pVT , ET q (called the pattern and target56

graphs respectively), the decision (enumeration, counting, resp.) versions of SIP asks for57

the existence (all occurrences, the number of, resp.) of subgraph isomorphisms ϕ : VP Ñ VT58

from P to T .59

We can treat subgraph isomorphism as a CSP in the following manner: pattern vertices are60

variables, with domains of target vertices; target vertices are values; constraints are defined61

by edges (such that pu, vq P EP ùñ pϕpuq, ϕpvqq P ET) and an ‘all different’ constraint on62

the image ϕpVP q (where ϕpuq ‰ ϕpvq for any u, v P VP). The decision, enumeration and63

counting problems aim to find one, all, and the number of solutions respectively.64

Gent and Smith [7] present a method they call “Symmetry Breaking During Search”65

and its applications to various constraint-programming-style graph search problems, which66

requires user input to specify problem symmetries. Puget [11] gives a method to add67

symmetry breaking constraints during search, which proves to be competitive with other68

techniques – this method uses an auxiliary CSP to calculate graph isomorphisms at each node.69

Zampelli et al. [17] discuss detection techniques for various symmetries in SIP along with70

methods of exploitation, finding that the overhead produced by calculating automorphisms71

on variables and values was enough to significantly diminish their gains. Yang et al. [16]72

present several symmetries in SIP all based on what they refer to as ‘structural symmetry’,73

which is a subset of the whole automorphism group of a graph that can be calculated easily.74

Thanks to Dejavu [1], we can take a step further: we are able to automatically identify75

symmetries using the Schreier-Sims algorithm [13], and do so with minimal overhead. Fur-76

thermore, the set we identify describes all variable and value symmetries.77

Variable and Value Ordering Symmetry breaking techniques partition the set of solutions78

into equivalence classes, and only searching for the ‘smallest’ solution in each class. To79

properly determine which solution is the smallest, we must first determine an order on80

the solutions. In this paper, we use ď and ď to denote total orderings over VP and VT ,81

respectively. We can naturally represent solutions as tuples in the following way: for a82

subgraph isomorphism ϕ : VP Ñ VT , let rrϕssď be the |VP |-tuple rϕpp1q, ϕpp2q, ¨ ¨ ¨ , ϕpp|VP |qs,83

where pi ď pi`1 for all i. Representing subgraph isomorphisms as tuples gives us a means of84

ordering subgraph isomorphisms using lexicographical ordering: for a total ordering ď over85

the set S, the lexicographical ordering ďlex over ď is a total ordering on all n-tuples over S86

such that A ďlex B ðñ ai ă bi for some 1 ď i ď n and aj “ bj for all 1 ď j ă i, or they87

are all the same. We sometimes omit the brackets for readability, for example in Example 7.88

J. Loughney, R. Hoffmann, M. S. Chang, C. McCreesh 0:3

§ Example 1. A solution ϕ : pa ÞÑ 1, b ÞÑ 4, c ÞÑ 2q using the variable ordering a, c, b would89

have a tuple representation rrϕssď “ r1, 2, 4s. If the variable ordering was c, b, a we would90

have rrϕssď “ r2, 4, 1s. Note that the value ordering does not matter (yet).91

Now if we had solutions r1, 3, 4s and r1, 2, 4s with a value ordering 1, 2, 3, 4, we have that92

r1, 2, 4s ďlex r1, 3, 4s (since 1=1 and 2 ď 3). If instead the value order was 4, 1, 3, 2, we would93

have r1, 3, 4s ďlex r1, 2, 4s.94

Symmetries in SIP An automorphism of a graph G “ pVG, EGq is a permutation α : VG Ñ95

VG of the vertex set that preserves the edge set EG. The set of all automorphisms of a graph96

G forms an algebraic structure called the automorphism group of G and denoted AutpGq.97

We write permutations using the cycle notation.98

Let P, T be graphs, g P AutpP q and h P AutpT q and ϕ : VP Ñ VT be a subgraph99

isomorphism from P to T . Denote by ϕg and ϕh the compositions g ˝ ϕ and ϕ ˝ h respectively.100

Then ϕg and ϕh are subgraph isomorphisms from P to T as well. This now gives a notion of101

symmetry. More specifically, we say that two subgraph isomorphisms ϕ and ϕ1 from P to T102

are symmetrical if there exists g P AutpP q and h P AutpT q such that ϕ1 “ pϕgqh.103

A common way of completely breaking symmetries in CSP is by using the lex-leader104

constraint, which takes the form X ď Xs, @s P S, where X is the decision variable, S is the105

set of all symmetries and Xs denotes the image of a value of X under the symmetry s. We106

may replace S with a subset to obtain a sound but incomplete symmetry breaking constraint107

(see [12] for more details). For SIP, we take S as the set tg ˝ h : g P AutpP q, h P AutpT qu108

consisting of all combinations of pattern and target graph automorphisms. Therefore, in109

general, our symmetry breaking constraint takes the following form, where S Ď S:110

rrϕssď ďlex rrϕgssď, @ g P S. (1)111

§ Example 2. Let ϕ be the assignment pa ÞÑ 0, b ÞÑ 1, c ÞÑ 2q found at some point during112

search, and let us use the orderings ra, c, bs and r0, 1, 2s for ď and ď respectively; then113

rrϕssď “ r0, 2, 1s. Let g “ pb cq be an automorphism; then rrϕgssď “ r0, 1, 2s. Since114

rrϕgssď ălex rrϕssď, an algorithm with symmetry breaking should reject ϕ.115

In Equation (1), there are 3 things we may vary: (a) ď, the variable ordering; (b) ď, the116

value ordering; and (c) the subset of the symmetry group. We now have a choice of seemingly117

independent things to vary when breaking symmetries in the problem. It is unlikely that one118

variation will be the optimal choice in all cases. Can we say why some choices are better for119

a given problem? Can we decide when is best to use each variation?120

In the next section, we will see how we may theoretically vary the first two points,121

and whether they interact with each other; the following section will look at practical122

implementations of this theory; and Section 5 will examine some empirical evidence supporting123

the use of the various techniques. We will not examine the third point in this paper; this is124

left as future work.125

3 Varying the Variable and Value Ordering126

The types of variable and value ordering we may use are the fixed ordering, the flexible127

ordering and the dynamic ordering. We shall illustrate these ideas using examples of finding128

pattern graph P (Figure 1) in target graph T (Figure 2). Note that the examples use only129

variable ordering, but the concepts are identical for value ordering. We shall take the natural130

ordering of integers as the our value ordering.131

CP 2025

0:4 Symmetry Breaking in the Subgraph Isomorphism Problem

Assume also that, for the purposes of illustration, we perform no inferences on symmetry132

breaking, and only naïve accept-or-reject conditions when two symmetric vertices are both133

assigned. In practice, we can make inferences much earlier on to significantly reduce the size134

of the search tree.135

a b

c

Figure 1 A pattern graph P .

0 1

2

3 4

Figure 2 A target graph T .

§ Example 3 (Fixed – Predefined Static). We pick a variable and value ordering before search.136

Suppose our predefined static ordering for the case Figure 1 ÞÑ Figure 2 found a and c to be137

symmetric, and gave a variable order of c ă b ă a. Then the search tree looks as the one in138

Figure 3.139

root

a=0 a=1 a=2 a=3 a=4

b=1 b=2 b=3 b=0 b=2 b=4 c=0 c=1 b=0 b=4 b=1 b=3

c=2 c=1 c=2 c=0 b=1 b=0

Figure 3 The search tree with symmetry breaking with respect to a predefined static variable
ordering of c ă b ă a. Green nodes are accepted solutions, red nodes are rejected states.

As we see, using the given variable order with a and c symmetric rejects the otherwise140

accepted solutions r2, 1, 0s, r2, 0, 1s, r1, 2, 0s but still accepts r0, 1, 2s, r0, 2, 1s, r1, 0, 2s. Note141

that even though b is in the variable order, it is not found to be symmetric with anything142

and so does not have an effect on which solutions are kept or rejected.143

§ Example 4 (Flexible – Static During Search). In this version, we decide on an ordering only144

as needed, corresponding to the variable/value order first picked by the solver and remaining145

fixed once fully ordered. Note in particular that unlike the previous method, we do not146

choose a variable order before search, though we still identify a and c as symmetrical. The147

search tree now looks as in Figure 4.148

Figure 4 shows that, with the variable ordering a ă b ă c, the solutions r2, 1, 0s, r2, 0, 1s, r1, 2, 0s149

are rejected, and r0, 1, 2s, r0, 2, 1s, r1, 0, 2s accepted. This strategy favours the leftmost branch150

of the search tree, i.e. the one traversed first, and makes it preferable for the decision problem.151

We may note that both Example 3 and Example 4 use a fixed ordering once fully152

constructed in either case, the key distinction being that predefined ordering does not take153

into account the variable order that the solver might use.154

§ Example 5 (Dynamic). Finally, consider the case with dynamic variable ordering, where155

the ordering at any search node corresponds directly to the variables assigned at that node.156

J. Loughney, R. Hoffmann, M. S. Chang, C. McCreesh 0:5

root

a=0 a=1 a=2 a=3 a=4

b=1 b=2 b=3 b=0 b=2 b=4 c=0 c=1 b=0 b=4 b=1 b=3

c=2 c=1 c=2 c=0

Figure 4 The search tree with symmetry breaking with respect to a static variable ordering
constructed during search. In this case we visit a then b then c, so the ordering is a ă b ă c.

If the problem in Example 4 had used dynamic symmetry breaking, the only point at which157

the order would be different is at the subtree a ÞÑ 2, where the order is a ă c rather than158

a ă b. Not only that, but the search trees would look identical! Dynamic symmetry breaking159

is strong and breaks many symmetries, but may be slower to compute overall.160

4 Symmetry Breaking Techniques161

We have so far decided that we may define solutions (and non-solutions) to be symmetrical if162

there exists an automorphism, or composition of automorphisms, mapping one onto the other.163

It remains to decide how best to describe the automorphisms with constraints. Presented in164

this section are two methods of doing so.165

4.1 Using Orbits for Symmetry Breaking166

For a vertex v in a graph G, its orbit orbpvq is the set tvα | α P AutpGqu consisting167

of all images of v under automorphisms of G. For example, for the graph in figure 2,168

orbp1q “ t0, 1u, orbp2q “ t2u and orbp3q “ t3, 4u.169

Using vertex orbits of the pattern and target graphs, we can generate constraints to break170

symmetries. The constraints are added to the solver in the following forms:171

For variable (or pattern) symmetry, a ă b means that a appears before b in our variable172

order, and therefore appears before b in our tuples in (1).173

For value (or target) symmetry, a ă b means that a appears before b in the value order,174

and therefore ra, ¨ ¨ ¨ s ďlex rb, ¨ ¨ ¨ s.175

We can make inferences about these constraints which allow us to refine domains with176

forward checking and arc consistency. For pattern constraints, for example, we may reason177

that the constraint p ă q (where p and q are symmetric) implies ϕppq ď ϕpqq. Hence using178

the constraint p ă q we can infer two things about the domains of p and q, even before they179

are assigned:180

the smallest value (with respect to ă) of the domain of q cannot be less than or equal to181

the smallest value of the domain of p.182

the largest value (with respect to ă) of the domain of p cannot be greater than or equal183

to the largest value in the domain of q.184

We have implemented an algorithm into the solver which removes values which do not185

satisfy the above requirements from variable domains.186

CP 2025

0:6 Symmetry Breaking in the Subgraph Isomorphism Problem

For target constraints we may reach similar conclusions, with one notable exception:187

SIP is non-surjective, so not all values need be assigned. We therefore reach the following188

inferences from a constraint t ă u:189

if ϕppq “ t, u cannot be used for any variable q ă p.190

if ϕppq “ u, we must have ϕpqq “ t for some variable q ă p.191

if t is not assigned, u cannot be assigned either.192

Note here that since we only use a single cycle from each permutation, we cannot derive193

the complete ordering in either case. As such, we cannot use variable and value ordering194

simultaneously in case they conflict.195

4.2 Using Permutations for Symmetry Breaking196

When using orbits, we lose some information about symmetries of other vertices – our running197

example, we could only consider t0, 1u or t3, 4u since fixing any vertex also fixes the rest.198

Because of this, we cannot use variable and value symmetries at the same time.199

We may avoid this, then, with some technique which uses all cycles from a permutation200

at once. For a permutation pp qqpr sq, rather than adding binary constraints to the solver201

like the previous p ă q, we instead add the permutation itself, stored in a map object.202

§ Example 6 (A simple case). Let’s return to our running example and examine the search203

tree with fixed-order permutation-based value symmetry breaking.204

This first step is to determine the value order. We find the group AutpT q contains only pq205

and p0 1qp3 4q, which allows an implicit value ordering of either r0, 1, 2, 3, 4s or r1, 0, 2, 4, 3s.206

Without loss of generality, we select the latter. Then the search tree looks like this:207

root

a=0

r1, ¨ ¨ ¨ s ălex r0, ¨ ¨ ¨ s

a=1 a=2 a=3

r4, ¨ ¨ ¨ s ălex r3, ¨ ¨ ¨ s

a=4

b=0 b=2 b=4 c=0 c=1 b=1 b=3

c=2 c=0 b=1 b=0

r2, 1, 0s ălex r2, 0, 1s

Figure 5 The search tree with symmetry breaking with respect to a predefined static value
ordering of 1 ă 0 ă 2 ă 4 ă 3, and the permutation p0 1qp3 4q. Green nodes are accepted solutions,
red nodes are rejected states.

As we can see, this technique allows both the a ÞÑ 0 and a ÞÑ 3 subtrees to be filtered,208

whereas if we were to use orbits we could only filter one.209

Now, unlike with the previous technique, we know the complete total orderings, and210

hence can use both variable and value ordering simultaneously. This approach has also been211

implemented into the Glasgow Subgraph Solver, but has been omitted from this paper for212

space reasons.213

Here we compute a permutation the current assignment at each search node. We then214

examine the variables in lexicographical order; if either is unassigned, we cannot say whether215

the permutation or the current assignment is lexicographically smallest, and so we break and216

J. Loughney, R. Hoffmann, M. S. Chang, C. McCreesh 0:7

continue the search. On the other hand, if both are assigned, we know either to check the217

next vertex or either accept or reject.218

An important step in this algorithm is domain refinement of unassigned variables. Working219

backwards, we start with “if the (unassigned) variable vp were assigned to a value x such220

that xt ă ϕpvq, we would have a smaller solution and would thus reject that branch”. Using221

this logic, we can reject that branch ahead of time by removing x from the domain of vp.222

This technique is illustrated in Example 7.223

§ Example 7. Let ϕ “ r1, 2, 5, _, _s, p “ pc dq and t “ p3 4 5 6q, where _ denotes an224

unassigned value. Then ϕpt “ r1, 2, _, 6, _s (we exchange the variables c and d, then permute225

5 ÞÑ 6). Then since cp´1
“ d and 6t ă 5, 3t ă 5, we remove 3 and 6 from the domain of d.226

We can verify: r1t, 2t, 5t, 3t, _sp “ r1, 2, 4, 6, _s ălex r1, 2, 5, 3, _s and r1t, 2t, 5t, 6t, _sp “227

r1, 2, 3, 6, _s ălex r1, 2, 5, 6, _s – both would be permuted to a ‘smaller’ solution.228

5 Experimental Results229

Shown below are the runtimes of the Glasgow Subgraph Solver with various symmetry230

breaking techniques applied against the runtimes with no symmetry breaking. The dataset231

used is the graph benchmark set found at [14], which contains a large number of problem232

instances from a combination of real-world and theoretical sources. The experiments shown233

were run with a timeout of 30000ms, or 5 minutes, including the time taken to detect234

symmetries.235

Figure 6 Fixed order orbit variable symmetry
breaking vs. no symmetry breaking, runtime.

Figure 7 Fixed order orbit value symmetry
breaking vs. no symmetry breaking, runtime.

The fixed-order orbit symmetry breaking shown in Figure 6 and Figure 7 gives us several236

insights – the orange line runs through x “ y, so points below the line represent cases where237

symmetry breaking has sped up the solver, and cases above the line have been slowed down238

by symmetry breaking. The fact that some cases are slowed down may be unexpected!239

Unfortunately, while the number of search nodes is reduced, this comes at the cost of more240

expensive propagations at each remaining node, which leads to a slower time overall. As a241

rough estimate, we should only expect a speed-up when % reduction in search nodes
% increase in time per node ą 1.242

Moreover, it seems that variable symmetry breaking is significantly more effective than243

value symmetry breaking; while only a small number of value cases show a significant speed-244

up, large numbers of variable symmetry breaking cases are clustered at the lower right corner245

– where the solver had previously timed out, it now solves the problem very quickly.246

CP 2025

0:8 Symmetry Breaking in the Subgraph Isomorphism Problem

Figure 8 Flexible order orbit variable sym-
metry breaking vs. no symmetry breaking,
runtime.

Figure 9 Flexible order orbit value symmetry
breaking vs. no symmetry breaking, runtime.

The data in Figure 8 and Figure 9 shows that allowing for a flexible variable or value247

ordering yield significant improvements over the arbitrary static ordering. While variable248

still vastly outperforms value, both outperform their fixed-order counterparts.249

Figure 10 Fixed order permutation-based vari-
able symmetry breaking vs. no symmetry break-
ing, runtime.

Figure 11 Fixed order permutation-based vari-
able and value symmetry breaking vs. no sym-
metry breaking, runtime.

Figure 10, fixed order permutation-based symmetries, reflects a similar distribution to250

the flexible-order variable orbit symmetry breaking. This is somewhat unexpected – it seems251

that the additional information retained about symmetries by using permutations with a252

fixed variable ordering is enough to match the advantage of using a flexible variable ordering253

with orbits. The flexible order technique is not yet implemented for permutation-based254

symmetry breaking; once it is, another dataset will be generated which will make drawing255

more conclusions easier.256

Figure 11 introduces a great variance into the result set. This indicates that using variable257

and value symmetries in this method, though still more effective than the original solver on258

average, is less efficient than only using variable symmetries. Similar conclusions are drawn259

from value-only, omitted for brevity.260

J. Loughney, R. Hoffmann, M. S. Chang, C. McCreesh 0:9

6 Conclusion261

We have introduced a universal equation for symmetry breaking in SIP, and identified three262

key elements that can be varied independently of each other within this formula. We have263

discussed what it means to change a variable or value order, and what this looks like in terms264

of both solutions and search trees.265

We have presented two techniques for describing symmetries within a constraints-style266

solver, and shown that both can provide significant improvements in average runtime even267

without variable/value-order influence. Further, we have shown that altering these orderings268

to be closer to the search order can yield even greater improvements to the solver.269

Future work involves: investigating the effect of varying S, the set of permutations270

used for symmetry breaking; examining the effect of fully dynamic ordering on orbit-271

based symmetry breaking; investigating flexible and dynamic ordering in permutation-based272

symmetry breaking; and applying these generalised techniques to other graph search problems.273

References274

1 Markus Anders and Pascal Schweitzer. Dejavu Github repository. https://github.com/275

markusa4/dejavu, 2023.276

2 Vincenzo Bonnici, Rosalba Giugno, Alfredo Pulvirenti, Dennis Shasha, and Alfredo Ferro. A277

subgraph isomorphism algorithm and its application to biochemical data. BMC bioinformatics,278

14:1–13, 2013.279

3 Donatello Conte, Pasquale Foggia, Carlo Sansone, and Mario Vento. Thirty years of graph280

matching in pattern recognition. International journal of pattern recognition and artificial281

intelligence, 18(03):265–298, 2004.282

4 Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings of the Third283

Annual ACM Symposium on Theory of Computing, STOC ’71, page 151–158, New York, NY,284

USA, 1971. Association for Computing Machinery. doi:10.1145/800157.805047.285

5 Jo Devriendt, Bart Bogaerts, Maurice Bruynooghe, and Marc Denecker. Improved static286

symmetry breaking for sat. In Theory and Applications of Satisfiability Testing–SAT 2016: 19th287

International Conference, Bordeaux, France, July 5-8, 2016, Proceedings 19, pages 104–122.288

Springer, 2016.289

6 Torsten Fahle, Stefan Schamberger, and Meinolf Sellmann. Symmetry breaking. In Principles290

and Practice of Constraint Programming—CP 2001: 7th International Conference, CP 2001291

Paphos, Cyprus, November 26–December 1, 2001 Proceedings 7, pages 93–107. Springer, 2001.292

7 Ian P Gent and Barbara Smith. Symmetry breaking during search in constraint programming.293

Citeseer, 1999.294

8 Marijn JH Heule. Optimal symmetry breaking for graph problems. Mathematics in Computer295

Science, 13:533–548, 2019.296

9 Ciaran McCreesh et al. GSS Github repository. https://github.com/ciaranm/297

glasgow-subgraph-solver, 2024.298

10 Ivan Olmos, Jesus A Gonzalez, and Mauricio Osorio. Reductions between the subgraph299

isomorphism problem and hamiltonian and sat problems. In 17th International Conference300

on Electronics, Communications and Computers (CONIELECOMP’07), pages 20–20. IEEE,301

2007.302

11 Jean-Francois Puget. Symmetry breaking using stabilizers. In International Conference on303

Principles and Practice of Constraint Programming, pages 585–599. Springer, 2003.304

12 Francesca Rossi, Peter Van Beek, and Toby Walsh. Handbook of constraint programming.305

Elsevier, 2006.306

13 Charles C. Sims. Computational methods in the study of permutation groups††this re-307

search was supported in part by the national science foundation. In JOHN LEECH, ed-308

itor, Computational Problems in Abstract Algebra, pages 169–183. Pergamon, 1970. URL:309

CP 2025

https://github.com/markusa4/dejavu
https://github.com/markusa4/dejavu
https://github.com/markusa4/dejavu
https://doi.org/10.1145/800157.805047
https://github.com/ciaranm/glasgow-subgraph-solver
https://github.com/ciaranm/glasgow-subgraph-solver
https://github.com/ciaranm/glasgow-subgraph-solver

0:10 Symmetry Breaking in the Subgraph Isomorphism Problem

https://www.sciencedirect.com/science/article/pii/B9780080129754500205, doi:10.310

1016/B978-0-08-012975-4.50020-5.311

14 Christine Solnon. Benchmarks for the subgraph isomorphism problem. https://perso.liris.312

cnrs.fr/christine.solnon/SIP.html.313

15 Christine Solnon, Guillaume Damiand, Colin De La Higuera, and Jean-Christophe Janodet.314

On the complexity of submap isomorphism and maximum common submap problems. Pattern315

Recognition, 48(2):302–316, 2015.316

16 Dominic Yang, Yurun Ge, Thien Nguyen, Denali Molitor, Jacob D Moorman, and Andrea L317

Bertozzi. Structural equivalence in subgraph matching. IEEE Transactions on Network Science318

and Engineering, 2023.319

17 Stéphane Zampelli, Yves Deville, Mohamed Réda Saıdi, and Belaıd Benhamou. Symmetry320

breaking in subgraph isomorphism. In Proc. SymCon, volume 7. Citeseer, 2007.321

https://www.sciencedirect.com/science/article/pii/B9780080129754500205
https://doi.org/10.1016/B978-0-08-012975-4.50020-5
https://doi.org/10.1016/B978-0-08-012975-4.50020-5
https://doi.org/10.1016/B978-0-08-012975-4.50020-5
https://perso.liris.cnrs.fr/christine.solnon/SIP.html
https://perso.liris.cnrs.fr/christine.solnon/SIP.html
https://perso.liris.cnrs.fr/christine.solnon/SIP.html

	1 Introduction
	2 SIP as a Constraint Satisfaction Problem
	3 Varying the Variable and Value Ordering
	4 Symmetry Breaking Techniques
	4.1 Using Orbits for Symmetry Breaking
	4.2 Using Permutations for Symmetry Breaking

	5 Experimental Results
	6 Conclusion

