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1 Introduction8

Satisfiability (SAT) solvers have proven to be invaluable tools for solving large problems of9

interest to both theorists and industry practitioners. Over the last decade and a half, sub-10

stantial efforts have focused on parallelizing SAT, leading to the cube-and-conquer (CnC) [5]11

paradigm. A CnC solver partitions the input formula into numerous subproblems that can12

be solved independently in parallel. This strategy has successfully tackled longstanding open13

problems in mathematics, including the Pythagorean Triples problem [4], Schur Number14

Five [3], and the Empty Hexagon problem [6].15

Historically, lookahead techniques proved remarkably effective at selecting splitting16

variables, often enabling superlinear speedups even on thousands of cores [5]. However, most17

of the significant successes in the last five years have depended on expert-crafted manual18

partitions [2, 6, 8, 9]. This prevents many potential users of CnC to solve their problems19

effectively. We propose two novel, automated partitioning methods to overcome these issues.20

Our first cubing approach builds on the information contained in clausal proofs produced21

by SAT solvers. A clausal proof is a sequence of redundant clauses (i.e., clauses whose22

addition preserves satisfiability), ending with the empty clause to prove unsatisfiability. A23

central insight of this paper is that prefixes of clausal proofs can serve as effective stand-ins for24

complete proofs, and that the variables occurring in these proof prefixes provide a powerful25

heuristic for guiding partitioning decisions.26

Our second cubing approach is for problems containing a set of clauses and one large27

cardinality constraint. Such problems appear frequently in the constraint optimization setting28

with the cardinality constraint representing some resource bound. In contrast to the first29

approach, this technique uses a semantic understanding of auxiliary variables to produce a30

good problem partition.31

2 Partitioning Techniques32

2.1 Proof Prefix Based Splitting33

Given a formula φ, we run it with an off-the-shelf solver until a desired number of clauses34

are added to the proof emitted. Once the proof prefix is known, we count the variable35

occurrences in the proof, both positive and negative, and pick the most frequently occurring36

variable as the next variable to split on. After obtaining a splitting variable x, we create37

new formulas, φ ∧ x as well as φ ∧ x, and restart the process on both formulas. Naively,38

generating a complete partition in this manner, where each cube has size d, would require39

generating O(2d) proof prefixes, which would be prohibitively expensive. To get around this,40

we view this procedure as consisting of layers, and at each layer we generate a single variable41

by sampling proof prefixes from a constant number of formulas in the layer, combining42

the proofs for our variable extraction heuristic, and then extending all formulas by that43

variable. In other words, every cube in the partition will contain different polarities of the44
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XX:2 Problem Partitioning via Proof Prefixes

same set of variables. We call this a static partition. Notably, an effective static split can45

drastically improve our high-level understanding of these proofs by exposing the solver’s46

underlying reasoning and highlighting the variables it deems most significant. This technique47

was developed into a tool called Proofix which can sit on top of any proof-producing CDCL48

solver.49

2.2 Totalizer Based Splitting50

We also developed a partitioning technique based on auxiliary variables from the totalizer51

encoding [1] - a common cardinality-constraint used in problems with resource bounds. We52

assume that the problem is given in the cardinality-based input at-least-k conjunctive normal53

form (KNF [7]), but the cardinality constraint may be encoded as an at-most-k constraint54

by negating the literals and modifying the bound. The totalizer is structured as a binary55

tree that incrementally counts the number of true data literals at each node. Data literals56

form the leaves, and each node has auxiliary variables representing the unary count from the57

sum of its children counters. The root of the tree is then a set of variables, o1, . . . , on where58

ok is true if at least k leaves are true.59

In order to turn this cardinality-constraint into a partitioning method, we observe that60

the truth values of auxiliary variables in the interior of the tree designate how many true61

data literals are among its children and potentially its sibling nodes. Therefore, we can use62

a heuristic to determine which auxiliary variables correspond to balanced partitions of the63

constraints on the data literals. This technique was also developed into a tool.64

3 Results65

We evaluated Proofix against the state of the art CnC solver, March [5], on SAT competition66

formulas as well as difficult combinatorial problems. On the SAT competition formulas,67

Proofix outperformed March on 61% of problems, and in several cases was between 10 and68

1, 000 times faster. Moreover, comparing directly to CaDiCaL itself, using 32 cores, Proofix is69

able to find partitions which result in improved Wall Clock times 65% of the time, up to a70

100× performance improvement. On the selected difficult combinatorial problems that we71

tested, Proofix outperformed March in all three of our tests – both in single-core and 32-core72

performance. In one instance, Proofix was able to solve a formula in 2, 200 seconds on which73

March timed out after several of its subproblems took more than 10, 000.74

Moreover, we used formulas from the MaxSAT competition, as well as the combinatorial75

problems, to evaluate the totalizer splitting technique. It outperformed March on 4 out of the76

5 difficult problems we selected from the competition, as well as 2 out of the 3 combinatorial77

problems. However, it is worth noting that in most cases, Proofix performed better.78

4 Conclusion79

In this paper we presented two novel techniques for automatically partitioning SAT formulas,80

one based on proof prefixes and the other based on the totalizer encoding. We demonstrated81

that the limitation to static partitions is not a major setback, while also providing numerous82

qualitative benefits towards explainability. Finally, we developed tools for both of the splitting83

techniques and demonstrated that the techniques perform better than the state-of-the-art84

tool on numerous problems. There are several questions left open for future work:85
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What makes some proofs more amenable than others for splitting, and is this property86

identifiable in a prefix? In other words, can we detect when a prefix is unlikely to yield a87

good partition?88

Given that we can find good variables for a partition, is there a way to automatically89

turn them into a dynamic partition, or generalize them from their semantic meaning?90

The details of the techniques, experiments, and results discussed in this extended abstract91

and can be found in the full paper in the SAT ’25 proceedings.92
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