
Beyond Core-Guided MaxSAT1

Ilario Bonacina #2

UPC Universitat Politècnica de Catalunya, Spain3

Jordi Levy #4

IIIA, CSIC, Spain5

Ion Mikel Liberal #6

IIIA, CSIC, Spain7

Abstract8

Several proof systems for MaxSAT have been proposed in the literature, including MaxSAT resolution9

and, more recently, systems based on polynomial calculus and tableaux. Although these systems are10

sound and complete and have varying strengths, they fail to capture the specific inferential strategies11

used by practical MaxSAT solvers, particularly those used in core-guided approaches. As a result, a12

formula that is hard to prove in these proof systems may not be hard for a solver, and vice versa.13

In this paper, we describe a new proof system for MaxSAT, the Comparator Calculus (CC),14

which models the inferential strategies used in core-guided MaxSAT solvers. We adapt it for partial15

MaxSAT and prove soundness and completeness in both settings. Based on this formalism, we16

introduce CSat, a novel MaxSAT solver prototype that, while not core-guided, employs SAT solver17

calls to remove unsatisfiable soft clauses. Experiments on random 2-CNF instances demonstrate that18

this scheme avoids the phase-transition slowdown observed in core-guided solvers near optimality19

certification.20

2012 ACM Subject Classification Theory of computation → Proof complexity; Mathematics of21

computing → Solvers22

Keywords and phrases MaxSAT, Proof Systems, Solvers, Optimization23

1 Introduction24

MaxSAT is the optimization version of the SAT problem. Unlike SAT, which asks whether25

a CNF formula is satisfiable or not, in MaxSAT we are interested in finding the maximum26

number of clauses that are satisfiable. Roughly speaking, there are three families of MaxSAT27

solvers in the literature: branch-and-bound [11, 12], core-guided [6, 2, 14, 13] , and implicit28

hitting set [5].Whereas branch-and-bound MaxSAT solvers represent the state-of-the-art for29

random formulas, core-guided and implicit hitting set solvers are preferred for industrial30

instances. Recently, Ihalainen et al. [8] showed how core-guided and implicit hitting set solvers31

can be seen as particular instances of a more general scheme. In both cases, these solvers32

call a SAT solver (in some cases with additional assumptions) to check the satisfiability of a33

CNF formula or obtain unsatisfiable subsets of clauses (cores) to guide the search toward an34

optimal solution. Recent advances have focused on certifying the correctness of core-guided35

MaxSAT solvers, ensuring their reliability in practical applications [3] and the integrity of36

preprocessing steps in MaxSAT solvers [9].37

Proof systems for MaxSAT include MaxSAT resolution [4], and versions of the polynomial38

calculus and Tableaux. However, they all fail to model the inferential strategies practical39

MaxSAT solvers use. In this work, we show how a simple proof system, the Comparator40

Calculus (CC), can model the type of calls core-guided solvers make to a SAT solver. A41

relevant feature of the Comparator Calculus is that it can also model uses of SAT solvers42

that differ significantly from core extraction. We exemplify this by showing an algorithm43

(CSat) for MaxSAT, whose behavior can be modeled by the Comparator Calculus. Despite44

relying on SAT solver calls, it does not follow the core-guided approach.45

mailto:ilario.bonacina@upc.edu
https://orcid.org/0000-0002-5697-8070
mailto:levy@iiia.csic.es
https://orcid.org/0000-0001-5883-5746
mailto:ion.mikel.liberal@iiia.csic.es
https://orcid.org/0009-0000-8160-4292

2 Beyond Core-Guided MaxSAT

The Comparator Calculus consists essentially of two substitution rules: the Comparator46

(comp) rule and the Contradiction (contr) rule. Without going into technical details,47

the comp rule substitutes two formulas by their conjunction and disjunction, while the48

contradiction rule substitutes an unsatisfiable formula with an immediate contradiction. In49

this case, to ensure the rule is polynomially checkable, the witness of the unsatisfiability is50

given by a refutation in some propositional proof system. This rule aims to capture the use51

of SAT solvers for solving MaxSAT.52

The comp rule is intended to capture the nature of the networks that are usually used to53

encode the cardinality constraints that come up in runs of core-guided solvers. Indeed, CC54

polynomially simulates the behavior of core-guided MaxSAT solvers such as Fu&Malik and55

OLL when the cardinality constraints are encoded using sorting networks, as is typically the56

case (see Section 4).57

Core-guided MaxSAT solvers were first introduced by Fu and Malik in [6], where the58

authors proposed a solver for partial MaxSAT that can be informally described as follows.59

The algorithm Fu&Malik calls a SAT solver with all the clauses (hard and soft) and takes60

advantage of the unsatisfiable set of clauses returned by the SAT solver by weakening the61

clauses in the core with new variables and imposing the condition that only one of those62

new variables must be falsified (cardinality constraint). Then, it repeats the same procedure63

until it gets a satisfiable formula. This algorithm is guided by the unsatisfiable sets of64

clauses returned by the SAT solvers. After this, several modifications and refinements of65

Fu&Malik’s scheme were proposed and, roughly speaking, the main differences lie in how66

these different approaches encoded and used cardinality constraints [2, 13, 5]. Nowadays, the67

OLL algorithm [13, 7] is a good representative of the state-of-the-art MaxSAT solvers.68

In this work, we present an algorithm for MaxSAT (CSat), which uses calls to a SAT69

solver but cannot be classified as core-guided. CSat works with a partial MaxSAT instance70

with unitary soft clauses. Initially, it obtains several satisfying assignments (models) of the71

hard part of the problem. Then, instead of searching for cores in the soft part, it tries to infer72

them. Taking advantage of the models, it constructs binary comparator circuits between soft73

clauses. When a soft clause is found that is falsified in all current models (a candidate), the74

SAT solver is called to certify its unsatisfiability. Depending on the result, the candidate is75

either removed, or the model returned by the SAT solver is added to the set of models. The76

algorithm terminates when a model satisfying all remaining soft clauses is obtained.77

On the theoretical side, the definition of a not-too-strong proof system that simulates78

the behavior of practical MaxSAT solvers opens up the possibility of applying tools from79

proof complexity. For instance, to derive concrete performance limits for specific classes of80

formulas or encodings, such as cardinality constraints or random CNF instances.81

Structure of the article82

In Section 2 we recall all the necessary preliminaries for this work. Section 3 contains the83

definition of the comparator calculus, its soundness and completeness. Section 4 contains84

some remarks on the connection between the comparator calculus and core-based MaxSAT85

solvers. Section 5 contains the high-level description and the pseudo-code of CSat. Finally,86

in Section 6, we make some concluding remarks.87

2 Preliminaries88

In this section, we recall standard notions and notations used throughout the paper. Let89

X be a set of Boolean variables. A literal ℓ is a variable x from X or its negation ¬x.90

I. Bonacina, J. Levy and I. M. Liberal 3

Propositional formulas are constructed recursively from literals using conjunctions (∧) and91

disjunctions (∨). In particular, a clause is a disjunction of literals, and a formula in CNF is92

a conjunction of clauses. We denote the empty clause with ⊥.93

A (total) assignment is a mapping α : X → {0, 1}. We extend assignments to propositional94

formulas in the usual way: setting α(¬x) = 1 − α(x), α(A ∨ B) = max{α(A), α(B)}, and95

α(A ∧B) = min{α(A), α(B)}, together with all the properties of classical logic (1 ∨ C = 1,96

0 ∨ C = C, etc). An assignment α satisfies a multi-set of formulas Σ (noted α |= Σ) if, for97

every formula F ∈ Σ, α(F) = 1. The multi-set Σ is satisfiable if there exists an assignment α98

such that α |= Σ. We say that α is a model of Σ. Otherwise, Σ is unsatisfiable. Any subset99

of Σ which is unsatisfiable is an (unsatisfiable) core. Given a multi-set of formulas Σ and an100

assignment α, the cost of Σ under α is101

costα(Σ) =
∑
F ∈Σ

(1− α(F)) ,102

i.e. costα(Σ) is the number of formulas in Σ falsified by α.103

We consider (partial) MaxSAT instances of the form F = H∪ S where H is a set of hard104

formulas and S is a multi-set of soft formulas. The cost of F is105

cost(F) = costH(S) = min
α : α|=H

costα(S),106

i.e., cost(F) is the minimum number of falsified formulas in S by any assignment satisfying all107

the hard formulas in H. W.l.o.g. we can assume the soft formulas to be literals ¬b1, . . . ,¬bm:108

indeed, any soft formula Fi ∈ S can be equivalently represented by a hard formula Fi ∨ bi109

and a soft literal ¬bi (where bi is a fresh new variable). This is the blocking literals encoding110

and it is how usually MaxSAT instances are encoded in practice.111

Notice that, in SAT solving, formulas are assumed to be sets or conjunctions of clauses,112

i.e., in CNF. Similarly, in MaxSAT solving, formulas are assumed to be multi-sets of clauses.113

Here, we deal with arbitrary formulas, and MaxSAT problems are multi-sets of arbitrary114

formulas. Moreover, we also deal with sets of assignments A.115

3 The Comparator Calculus116

In this section, we introduce the Comparator Calculus (CC) for MaxSAT. For simplicity,117

we only consider unweighted formulas, although the calculus can be easily extended to the118

weighted case by adding fold and unfold rules to it (see [4]). First, we describe the calculus119

on multi-sets of soft formulas and then we show the minor adaptations for the calculus to120

deal with hard and soft formulas.121

The Comparator Calculus manipulates multi-sets of propositional formulas with two122

substitution rules: the comparator (comp) rule and contradiction (contr) rule. That is, the123

following inference rules are applied by replacing the premises with the conclusions:124

A B

A ∧B A ∨B
(comp) A

⊥ {A unsatisfiable} (contr) . (1)125

In the contr rule, there is a side condition that requires the unsatisfiability of the126

premise A in order to apply the rule. To certify each application of this rule we need to127

provide for each of them a refutation of the premise A (or a suitable encoding of A) in some128

propositional proof system P . For instance, we could consider as P the propositional proof129

system Frege (see for instance [10]), or we could provide the proof of unsatisfiability of a130

4 Beyond Core-Guided MaxSAT

suitable encoding enc(A) produced by a SAT solver. Since most SAT solvers we could use131

for certifying the unsatisfiability of A only work on CNF formulas, in this case, the use of an132

encoding becomes necessary.133

Notice that both the comp rule and the contr rule preserve the cost: for every assign-134

ment α we have135

costα({A, B}) = costα({A ∧B, A ∨B}) and costα(A′) = costα(⊥) (2)136

when A′ is unsatisfiable.137

▶ Example 3.1. Given the (multi-)set of formulas {x1 ∧ x2, ¬x1 ∧ x3, ¬x2 ∧ ¬x3}, we can138

perform the following substitutions using the comp and contr rules:139

x1 ∧ x2, ¬x1 ∧ x3, ¬x2 ∧ ¬x3 comp
x1 ∧ x2 ∧ ¬x1 ∧ x3, (x1 ∧ x2) ∨ (¬x1 ∧ x3), ¬x2 ∧ ¬x3 contr

⊥, (x1 ∧ x2) ∨ (¬x1 ∧ x3), ¬x2 ∧ ¬x3 comp
⊥, ((x1 ∧ x2) ∨ (¬x1 ∧ x3)) ∧ ¬x2 ∧ ¬x3, (x1 ∧ x2) ∨ (¬x1 ∧ x3) ∨ (¬x2 ∧ ¬x3)

contr
⊥, ⊥, (x1 ∧ x2) ∨ (¬x1 ∧ x3) ∨ (¬x2 ∧ ¬x3)

140

▶ Definition 3.2 (Comparator Calculus). Let F and Γ be multi-sets of (soft) formulas and P141

a propositional proof system. A derivation of Γ from F in the Comparator Calculus (CCP)142

is a sequence of multi-sets π = ⟨M0, . . . , Ms⟩ such that M0 = F , Γ ⊆Ms, and for each i one143

of the following two cases occurs:144

1. there are formulas A, B ∈Mi such that145

Mi+1 = (Mi \ {A, B}) ∪ {A ∧B, A ∨B} ,146

2. there is an unsatisfiable formula A ∈Mi and147

Mi+1 = (Mi \ {A}) ∪ {⊥} .148

In this case, there is also attached a P -proof of the unsatisfiability of A.149

In other words, for every i = 0, . . . , s− 1, the multi-set Mi+1 is obtained from Mi applying150

either the comp rule or the contr rule from eq. (1) to formulas in Mi. The size of the151

derivation is the total number of bits needed to write down the derivation, including the152

P -proofs certifying the validity of the contr steps.153

For a lighter notation we usually omit the proof system P in the notation for CC. We154

show first that CC is sound and complete.155

▶ Theorem 3.3 (Soundness). Given F and a CC derivation π = ⟨M1, . . . , Ms⟩ with M1 = F156

and {⊥, k. . .,⊥} ⊆Ms, it holds that cost(F) ≥ k.157

▶ Theorem 3.4 (Completeness). For every multi-set of formulas F with cost(F) = k there158

exists a CC derivation π = ⟨M1, . . . , Ms⟩ with M1 = F and {⊥, k. . .,⊥} ⊆Ms.159

For partial MaxSAT, this ideas can be easily adapted if we consider sequences of pairs of160

multisets.161

I. Bonacina, J. Levy and I. M. Liberal 5

4 Connection with Core-Based MaxSAT Solvers162

In this section, we show how CC simulates the OLL and a version of the Fu&Malik algorithm.163

In particular, a version of Fu&Malik with symmetry breaking is considered, which better164

adapts to CC. As a consequence, size lower-bounds for CC imply time lower-bounds for those165

particular core-guided MaxSAT solvers.166

4.1 The Proof System Behind the OLL Algorithm167

Given a MaxSAT instance F , the OLL algorithm replaces the clauses in a core C by soft168

cardinality constraints. If we focus on the unweighted case and use formulas instead of169

clauses, this is equivalent to applying the rule:170

A1 · · · Ar

⊥ enc(
∑r

i=1 Ai ≥ r − 1) · · · enc(
∑r

i=1 Ai ≥ 1) {A1∧· · ·∧Ar unsatisfiable} (OLL) (3)171

where the unsatisfiability of A1 ∧ · · · ∧ Ar is certified in a propositional proof system P172

and enc(
∑r

i=1 Ai ≥ j) is a propositional formula equivalent to the cardinality constraint173 ∑r
i=1 Ai ≥ j. Notice that if A1 ∧ · · · ∧ Ar is unsatisfiable then there is no assignment α174

satisfying enc(
∑r

i=1 α(Ai) ≥ r). The OLL rule in eq. (3) is cost-preserving. To emphasize175

the underlying propositional proof system P , we use the notation OLLP calculus to denote176

the calculus that use the rule above.177

Among the various methods to encode cardinality constraints, using sorting networks is178

one of the most commonly used in current solvers. In Example 4.1, we show how sorting179

networks can be used to obtain a particular instance of the OLL rule for r = 3.180

▶ Example 4.1. In the case r = 3, an optimal sorting network is:181

x1 y1 = x1 ∧ x2 ∧ x3

x2 y2 = (x1 ∨ x2) ∧ ((x1 ∧ x2) ∨ x3)

x3 y3 = (x1 ∨ x2) ∨ ((x1 ∧ x2) ∨ x3)
182

In particular y1 is equivalent to x1 + x2 + x3 ≥ 3, y2 is equivalent to x1 + x2 + x3 ≥ 2 and183

y3 is equivalent to x1 + x2 + x3 ≥ 1. Therefore, the OLL rule for r = 3 can be written as:184

A1 A2 A3
⊥ (A1 ∨A2) ∧ ((A1 ∧A2) ∨A3) (A1 ∨A2) ∨ ((A1 ∧A2) ∨A3) {A1∧A2∧A3 unsatisfiable}185

The main idea behind this method is as follows. Let y1, . . . , yr = SN(x1, . . . , xr) be a186

sorting network with inputs x1, . . . , xr and outputs y1, . . . , yr, the assignment α satisfies the187

constraint x1 + · · ·+ xr ≥ i if, and only if, the output yr−i+1 in SN(α(x1), . . . , α(xr)) is one.188

The Partial MaxSAT version of the OLL rule, using sorting networks, is:189

x1 · · · xr

⊥ y2 · · · yr CNF(y1, . . . , yr = SN(x1, . . . , xr))∞
{H ∪ {x1, . . . , xr} unsatisfiable} (4)190

This calculus is the one modeling the basic OLL algorithm, which uses calls to a SAT191

solver to find the core. To do this, the formulas describing the sorting network in eq. (4)192

need to be CNFs (for example via a Tseitin encoding),and are added as hard clauses.193

6 Beyond Core-Guided MaxSAT

Sorting networks with n inputs can be defined using O(n log n) comparators and with194

depth O(log n) [1], where a comparator is a circuit that takes input x, y and has output195

x ∧ y, x ∨ y, like our comp rule. Defining these networks with comparator circuits fits very196

well in the context of CC. In particular, the rule for r = 3 from above can be simulated in197

CC with 3 applications of the comp rule (see Example 4.1) because there exists a sorting198

network with n = 3 that only uses 3 comparators. In general, we have the following result.199

▶ Theorem 4.2. CCP polynomially simulates the OLLP calculus using sorting networks to200

encode soft cardinality constraints.201

4.2 The Proof System Behind Fu&Malik Algorithm202

In the Fu&Malik algorithm, every time a core {A1, . . . , Ar} is found (by calling a SAT solver203

on the soft clauses), all the soft clauses are relaxed adding a fresh variable xi for each i ≤ r204

and a hard constraint x1 + · · ·+ xr ≤ 1. In addition, an empty clause is added to ensure205

that only one of the original soft clauses is repaired. Therefore, in terms of formulas, the206

derivation can be modeled as:207

A1 · · ·Ar

⊥ A1 ∨ x1 · · · Ar ∨ xr enc (
∑r

i=1 xi ≤ 1)∞
{A1∧· · ·∧Ar unsatisfiable} (Fu&Malik)

(5)208

As for the OLL calculus we call the calculus using the rule above the Fu&Malik calculus209

and this calculus clearly models the Fu&Malik algorithm.210

In this case, the introduction of hard constraints avoids the possibility of defining a211

calculus where all formulas are soft. Moreover, this encoding introduces a lot of symmetries.212

If an assignment falsifies several Ai’s, we can decide to set any of their xi’s to true, getting213

several optimal assignments.214

In other words, we set xi to true only if all previous formulas A1, . . . , Ai−1 are already215

satisfied. Therefore, the soft clause Ai ∨xi is equivalent to the formula Ai ∨ (A1 ∧ · · · ∧Ai−1).216

With this restriction, the derivation results in:217

A1 · · ·Ar

⊥ A2 ∨A1 A3 ∨ (A1 ∧A2) · · · Ar ∨ (A1 ∧ · · · ∧Ar−1)
{A1 ∧ · · · ∧Ar unsatisfiable}
(Fu&Malik Sym. Break)

(6)218

We call the calculus using the rule above Fu&Malik calculus with symmetry breaking. As usual,219

we use a subscript P to denote the propositional proof system used to certify unsatisfiability.220

Notice that with this restriction on which soft clause we repair, we no longer need the221

cardinality restriction ensuring that only one is repaired. The first soft formula A1 ∨ x1 is222

always repaired. Therefore, it is a tautology and can be removed from the conclusions.223

▶ Example 4.3. For the case r = 3, this derivation can be simulated with 2 applications of224

comp and one of contr:225

A1 A2 A3 comp
A1 ∧A2 A1 ∨A2 A3 comp

A1 ∧A2 ∧A3 (A1 ∧A2) ∨A3 A1 ∨A2 contr {A1 ∧A2 ∧A3 unsatisfiable}
⊥ (A1 ∧A2) ∨A3 A1 ∨A2

226

I. Bonacina, J. Levy and I. M. Liberal 7

Algorithm 1 The CSat algorithm

Input: A set of hard clauses H and a multi-set of unary soft clauses S
Output: costH(S) and an optimal assignment α s.t. α |= H and costα(S) = costH(S)
A ← {α | sat, α← SAT (H)} ▷ Set of assignments s.t. ∀α ∈ A.α |= H
lb = 0 ▷ Lower bound for costH(S)
rub = min

α∈A
{costα(S)} ▷ Remaining upper bound for costH(S)

while rub > 0 do
if ∃c ∈ S ∀α ∈ A, α(c) = 0 then ▷ Exists a candidate c of empty clause

sat, α← SAT(H ∪ {c})
if sat then ▷ Introduce new model in A
A ← A∪ {α}
rub← min {rub, costα(S)}

else ▷ Apply contr rule
lb← lb + 1
rub← rub− 1
S ← S \ {c}

end if
else ▷ Apply comp rule

b1, b2 ← heuristic(H,S,A)
H ← H∪ CNF(x↔ b1 ∧ b2, y ↔ b1 ∨ b2) ▷ x and y are fresh variables
S ← S \ {b1, b2} ∪ {x, y}

end if
end while
return lb and α ∈ A s.t. costα(S) = 0

The idea behind the simulation in the previous example is generalized in the following227

theorem.228

▶ Theorem 4.4. CCP linearly simulates the Fu&MalikP calculus with symmetry breaking.229

5 A New SAT-based Algorithm for MaxSAT230

This section presents a new algorithm, called CSat, for solving (weighted) Partial MaxSAT.231

For the sake of clarity, we only cover the unweighted case, but a minor adaptation of the232

discussion would work for Weighted Partial MaxSAT as well. CSat, as other recent MaxSAT233

solvers, takes as input a partial MaxSAT instance encoded with blocking variables, that is, a234

multi-set H of hard clauses and a multi-set S of soft unary clauses.235

For the description of CSat we refer to the pseudo-code in Algorithm 1.236

▶ Theorem 5.1 (Correctness). The algorithm CSat on input F = H ∪ S, if it terminates,237

returns costH(S).238

In general, it is not true that CSat always terminates. It depends on the heuristic239

subroutine we use to select the two soft clauses to apply comp. Suppose, for instance, that240

heuristic were selecting always the last two soft clauses. Since the application of comp to the241

formulas A∧B and A∨B results in (A∧B)∧(A∨B) = A∧B and (A∧B)∨(A∨B) = A∨B,242

we would enter an infinite loop.243

8 Beyond Core-Guided MaxSAT

Heuristic. The pseudo-code of the heuristic used in the implementation of CSat is described244

in Algorithm 2. This heuristic ensures termination of the CSat algorithm.245

For a set of assignments A and a formula F , let countA(F) be the number of assignments246

in A falsifying F , in other words247

countA(F) = |{α ∈ A : α(F) = 0}| =
∑
α∈A

costα(F) .248

Algorithm 2 The heuristic function

Input: S, A
Output: x, y ∈ S

B1 = arg max
x∈S

countA(x)

B2 = arg max
x∈B1,y∈S\{x}

countA(x ∧ y)

B3 = arg max
(x,y)∈B2

countA(x ∨ y)

return any (x, y) ∈ B3

249

▶ Theorem 5.2. The algorithm CSat with the heuristic in Algorithm 2 always terminates in250

O(|S|2) iterations.251

It is worthy of mention that we tested CSat on random Max2SAT instances and compared252

it to (our implementations of) other competitive solvers. In general, CSat seems to exhibit a253

better asymptotic behavior, but it is still not at the level of the others.254

6 Conclusions and Further Work255

This paper introduced the Comparator Calculus (CC), a sound and complete proof system for256

MaxSAT designed to reflect the inferential behavior of core-guided MaxSAT solvers and which257

is built from two simple cost-preserving substitution rules. We show how CC can simulate258

key solving strategies used by algorithms such as Fu&Malik and OLL. As a consequence,259

size lower-bounds of proofs in CC imply time lower-bounds in the mentioned algorithms. In260

contrast to prior approaches rooted in resolution or algebraic methods, CC offers a lightweight261

and practically motivated model that can serve both as a tool for theoretical analysis and as262

inspiration for new solver design.263

We also proposed a novel SAT-based MaxSAT solver prototype, CSat, that departs264

from the core-guided paradigm. Rather than relying on unsatisfiable core extraction, CSat265

incrementally constructs candidate formulas and tests their consistency. This approach helps266

to mitigate the known limitations of core-guided solvers near the optimality certification.267

Future work includes exploring proof complexity lower bounds within the calculus and268

improving the efficiency of CSat’s heuristics (aiming for quasi-linear comp rule complexity,269

similar to optimal sorting networks). It also remains open to study how different CNF270

encodings of formulas in the contr rule affect derivation size and tractability. More broadly,271

this line of work aims to bridge the gap between theoretical proof systems and the behavior272

of modern MaxSAT solvers, offering new avenues for both understanding and improving273

SAT-based optimization.274

I. Bonacina, J. Levy and I. M. Liberal 9

References275

1 Miklós Ajtai, János Komlós, and Endre Szemerédi. An O(n log n) sorting network. In276

Proceedings of the 15th Annual ACM Symposium on Theory of Computing (STOC), pages 1–9,277

1983. doi:10.1145/800061.808726.278

2 Carlos Ansótegui, Maria Luisa Bonet, and Jordi Levy. SAT-based MaxSAT algorithms. Artif.279

Intell., 196:77–105, 2013. doi:10.1016/J.ARTINT.2013.01.002.280

3 Jeremias Berg, Bart Bogaerts, Jakob Nordström, Andy Oertel, and Dieter Vandesande.281

Certified core-guided MaxSAT solving. In Proceedings of the 29th International Conference on282

Automated Deduction (CADE), pages 1–22, 2023. doi:10.1007/978-3-031-38499-8_1.283

4 Maria Luisa Bonet, Jordi Levy, and Felip Manyà. Resolution for Max-SAT. Artif. Intell.,284

171(8-9):606–618, 2007. URL: https://doi.org/10.1016/j.artint.2007.03.001, doi:10.285

1016/J.ARTINT.2007.03.001.286

5 Jessica Davies and Fahiem Bacchus. Solving MAXSAT by solving a sequence of simpler SAT287

instances. In Proceedings of the 17th International Conference on Principles and Practice of288

Constraint Programming (CP), pages 225–239, 2011. doi:10.1007/978-3-642-23786-7_19.289

6 Zhaohui Fu and Sharad Malik. On solving the partial MAX-SAT problem. In Proceedings of290

the 9th International Conference on Theory and Applications of Satisfiability Testing (SAT),291

pages 252–265, 2006. doi:10.1007/11814948_25.292

7 Alexey Ignatiev, António Morgado, and João Marques-Silva. RC2: an efficient MaxSAT solver.293

J. Satisf. Boolean Model. Comput., 11(1):53–64, 2019. doi:10.3233/SAT190116.294

8 Hannes Ihalainen, Jeremias Berg, and Matti Järvisalo. Unifying core-guided and implicit295

hitting set based optimization. In Proceedings of the 32nd International Joint Conference on296

Artificial Intelligence (IJCAI), pages 1935–1943, 2023. doi:10.24963/IJCAI.2023/215.297

9 Hannes Ihalainen, Andy Oertel, Yong Kiam Tan, Jeremias Berg, Matti Järvisalo, Magnus O.298

Myreen, and Jakob Nordström. Certified MaxSAT preprocessing. In Proceedings of the299

12th International Joint Conference on Automated Reasoning (IJCAR), pages 396–418, 2024.300

doi:10.1007/978-3-031-63498-7_24.301

10 Jan Krajíček. Proof Complexity. Cambridge University Press, 2019.302

11 Chu Min Li, Felip Manyà, Nouredine Ould Mohamedou, and Jordi Planes. Resolution-303

based lower bounds in MaxSAT. Constraints An Int. J., 15(4):456–484, 2010. doi:10.1007/304

S10601-010-9097-9.305

12 Chu-Min Li, Zhenxing Xu, Jordi Coll, Felip Manyà, Djamal Habet, and Kun He. Combining306

clause learning and branch and bound for MaxSAT. In 27th International Conference on307

Principles and Practice of Constraint Programming, CP 2021, volume 210 of LIPIcs, pages308

38:1–38:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPICS.309

CP.2021.38.310

13 António Morgado, Carmine Dodaro, and João Marques-Silva. Core-guided MaxSAT with311

soft cardinality constraints. In Proceedings of the 20th International Conference on Prin-312

ciples and Practice of Constraint Programming (CP), pages 564–573, 2014. doi:10.1007/313

978-3-319-10428-7_41.314

14 António Morgado, Federico Heras, Mark H. Liffiton, Jordi Planes, and João Marques-Silva.315

Iterative and core-guided MaxSAT solving: A survey and assessment. Constraints An Int. J.,316

18(4):478–534, 2013. doi:10.1007/S10601-013-9146-2.317

https://doi.org/10.1145/800061.808726
https://doi.org/10.1016/J.ARTINT.2013.01.002
https://doi.org/10.1007/978-3-031-38499-8_1
https://doi.org/10.1016/j.artint.2007.03.001
https://doi.org/10.1016/J.ARTINT.2007.03.001
https://doi.org/10.1016/J.ARTINT.2007.03.001
https://doi.org/10.1016/J.ARTINT.2007.03.001
https://doi.org/10.1007/978-3-642-23786-7_19
https://doi.org/10.1007/11814948_25
https://doi.org/10.3233/SAT190116
https://doi.org/10.24963/IJCAI.2023/215
https://doi.org/10.1007/978-3-031-63498-7_24
https://doi.org/10.1007/S10601-010-9097-9
https://doi.org/10.1007/S10601-010-9097-9
https://doi.org/10.1007/S10601-010-9097-9
https://doi.org/10.4230/LIPICS.CP.2021.38
https://doi.org/10.4230/LIPICS.CP.2021.38
https://doi.org/10.4230/LIPICS.CP.2021.38
https://doi.org/10.1007/978-3-319-10428-7_41
https://doi.org/10.1007/978-3-319-10428-7_41
https://doi.org/10.1007/978-3-319-10428-7_41
https://doi.org/10.1007/S10601-013-9146-2

10 Beyond Core-Guided MaxSAT

A Appendix318

A.1 The comparator Calculus319

▶ Theorem A.1 (Soundness). Given F and a CC derivation π = ⟨M1, . . . , Ms⟩ with M1 = F320

and {⊥, k. . .,⊥} ⊆Ms, it holds that cost(F) ≥ k.321

Proof. Since clearly cost(Ms) ≥ k, it is enough to prove by induction on i that cost(F) =322

cost(Mi).323

The base case i = 1 is trivial. For the induction step, we have two cases: Mi+1 is obtained324

from Mi using the comp rule or the contr rule.325

If Mi+1 is obtained from Mi using the comp rule, then there are some formulas A and326

B in Mi such that Mi+1 = (Mi \ {A, B}) ∪ {A ∧B, A ∨B}. Eq. (2) implies that for every327

assignment α, costα(Mi) = costα(Mi+1), hence cost(F) = cost(Mi) = cost(Mi+1).328

If Mi+1 is obtained from Mi using the contr rule, let A be the formula for which329

we apply the rule and denote with M ′
i the multi-set Mi \ {A}. Since A is unsatisfiable,330

for every assignment α we have costα(Mi) = 1 + costα(M ′
i). But, Mi+1 = M ′

i ∪ {⊥} and331

costα(Mi+1) = costα(M ′
i) + 1. Hence, again, cost(F) = cost(Mi) = cost(Mi+1). ◀332

▶ Theorem A.2 (Completeness). For every multi-set of formulas F with cost(F) = k there333

exists a CC derivation π = ⟨M1, . . . , Ms⟩ with M1 = F and {⊥, k. . .,⊥} ⊆Ms.334

Proof. Let F = {F1, . . . , Fm}. We show the result by induction on k. If k = 0, i.e. F is335

satisfiable there is nothing to do. Otherwise, suppose that cost(F) = k. We construct a336

sequence of multi-sets ⟨M1, . . . , Mm+1⟩, where M1 = F and337

Ms =
{

s∧
i=1

Fi

}
∪

 Fi ∨
i−1∧
j=1

Fj : i ∈ {2, . . . , s}

 ∪ {Fj : j ∈ {s + 1, . . . , m}}338

for every s ∈ {2, . . . , m}. We can obtain Ms+1 from Ms applying the comp rule to Fs+1 and339
s∧

i=1
Fi. In other words, the sequence ⟨M1, . . . , Mm⟩ is a CC derivation of F1 ∧ F2 ∧ · · · ∧ Fm340

together with a multi-set of m− 1 other formulas Γ. Since F is unsatisfiable we can apply341

the contr rule to F1 ∧ F2 ∧ · · · ∧ Fm in Mm and obtain the multi-set Mm+1 = {⊥} ∪ Γ. By342

the soundness of CC (Theorem A.1), we know that cost(Γ) = k − 1; hence, by induction343

hypothesis, there is a CC derivation ⟨N1, . . . , Nt⟩ of ⊥, k−1. . . ,⊥ from Γ. Putting everything344

together we have that ⟨M1, . . . , Mm, Mm+1, N1 ∪ {⊥}, . . . , Nt ∪ {⊥}⟩ is a CC derivation of345

⊥, k. . .,⊥ from F . ◀346

A.2 The Comparator Calculus on Partial MaxSAT347

We consider partial MaxSAT instances of the form F = H ∪ S, where H is a set of hard348

formulas and S is a multi-set of soft formulas and w.l.o.g. we assume S only contains literals349

(or ⊥s) and we denote hard clauses using a suffix ∞, i.e. to denote that a clause C is hard350

we write it as C∞. In adapting the rules of CC to this context, the comp rule becomes351

ℓ1 ℓ2
y1 y2 CNF(y1 ↔ ℓ1 ∧ ℓ2, y2 ↔ ℓ1 ∨ ℓ2)∞

(comp’)352

where ℓ1, ℓ2 are soft literals, y1, y2 are fresh new variables (also soft literals) and353

CNF(y1 ↔ ℓ1 ∧ ℓ2, y2 ↔ ℓ1 ∨ ℓ2)∞354

denotes the natural CNF encoding of y1 ↔ ℓ1 ∧ ℓ2 and y2 ↔ ℓ1 ∨ ℓ2 as hard clauses.355

I. Bonacina, J. Levy and I. M. Liberal 11

▶ Definition A.3 (CC in partial MaxSAT). A CC derivation from F = H∪S is a sequence of356

pairs π = ⟨(H1;S1), . . . , (Hs;Ss)⟩ where H1 = H, S1 = S and for each i one of the following357

two cases occurs:358

1. If Si = S ′
i ∪ {ℓ1, ℓ2} then introduce two fresh new variables y1, y2 and let359

Hi+1 = Hi ∪ {CNF(y1 ↔ ℓ1 ∧ ℓ2, y2 ↔ ℓ1 ∨ ℓ2)} and Si+1 = S ′
i ∪ {y1, y2} .360

2. If Si = S ′
i ∪ {ℓ} and Hi ∪ {ℓ} is unsatisfiable (which is certified by a refutation in a proof361

system P), then362

Hi+1 = Hi and Si+1 = {⊥} ∪ S ′
i .363

The option in Item 1 corresponds to the comp rule, while the option in Item 2 corresponds364

to an application of the contr rule. The size of a proof is the total number of bits needed365

to write the derivation, including the refutations in P appearing in Item 2. Notice that we366

count towards the size also the hard formulas.367

The soundness and completeness proofs of CC seen previously for the context of soft368

clauses adapt to hard and soft clauses without major modifications.369

▶ Theorem A.4 (Soundness). Given F = H∪S and a CC derivation π = ⟨(H1;S1), . . . , (Hs;Ss)⟩370

with H1 = H, S1 = S and {⊥, k. . .,⊥} ⊆ Ss, it holds that cost(F) = costH(S) ≥ k.371

Proof. We prove by induction on i that cost(F) = costHi
(Si). For i = 1 is trivial. Suppose372

that cost(F) = costHi
(Si). We show that costHi

(Si) = costHi+1(Si+1).373

If (Hi+1,Si+1) is obtained from (Hi,Si) by an application of the comp rule, there374

are some y1, y2 ∈ Si+1 such that Hi+1 = Hi ∪ {CNF (y1 ↔ b1 ∧ b2, y2 ↔ b1 ∨ b2} and375

Si+1 = (Si \ {b1, b2}) ∪ {y1, y2}. Showing that for every assignment α |= Hi+1 it holds376

costα(Si+1) = costα(Si) implies that costHi(Si) ≤ costHi+1(Si+1). Recall that, since α |=377

Hi+1 we have α(y1) = α(b1 ∧ b2) and α(y2) = α(b1 ∨ b2). Therefore,378

costα(Si+1) =
∑

b∈Si+1\{y1,y2}

costα(b) + costα(y1) + costα(y2)379

=
∑

b∈Si+1\{y1,y2}

costα(b) + costα(b1 ∧ b2) + costα(b1 ∨ b2)380

=
∑

b∈Si+1\{y1,y2}

costα(b) + costα({b1 ∧ b2, b1 ∨ b2})381

=
∑

b∈Si+1\{y1,y2}

costα(b) + costα({b1, b2})382

= costα(Si)383

The equality follows from the fact that any assignment α |= Hi is uniquely extended to a384

model of Hi+1.385

If Si = {ℓ} ∪ S ′
i where Hi ∪ {ℓ} is unsatisfiable and (Hi+1,Si+1) = (Hi, {⊥} ∪ S ′

i) then386

for every model α |= Hi we have387

costα(Si+1) = costα({⊥}) + costα(S ′
i)388

= costα({ℓ}) + costα(S ′
i)389

= costα(Si),390

concluding that costHi+1(Si+1) = costHi
(Si). ◀391

12 Beyond Core-Guided MaxSAT

▶ Theorem A.5 (Completeness). For every multiset of formulas F = H ∪ S with cost(F) =392

costH(S) = k there exists a CC derivation π = ⟨(H1;S1), . . . , (Hs;Ss)⟩ with H1 = H, S1 = S393

and {⊥, k. . .,⊥} ⊆ Ss.394

Proof. Let S = {b1, . . . , bm} and assume without loss of generality that the multi-set S is395

well ordered. We proceed by induction on cost(F). For k = 0 it is immediate. Suppose396

cost(F) = k. We construct a sequence π = ⟨(H1,S1), . . . , (Hm+1,Sm+1)⟩ as follows:397

H1 = H and S1 = S.398

For every 2 ≤ t ≤ m we define399

Ht := Ht−1 ∪ {CNF (y1 ↔ x1 ∧ xt, y2 ↔ x1 ∨ xt)}400

and401

St := (St−1 \ {x1, xt}) ∪ {y1, y2},402

where St−1 = {x1, . . . , xm} and y1, y2 are fresh variables. That is, we obtain each (Ht,St)403

from (Ht−1,St−1) applying the comp rule once to x1 and xt.404

Since S is well-ordered, each St is the multi-set {y1, x2, . . . , xt−1, y2, xt+1, . . . , xm} where405

St−1 = {x1, . . . , xm}: hence, if Sm = {ℓ1, . . . , ℓm} then Hm ∪ {ℓ} is logically equivalent to F .406

Since cost(F) > 0, F is unsatisfiable and therefore Hm ∪ {ℓ} ⊢ ⊥. We apply then the407

contr rule to (Hm,Sm), obtaining the pair408

(Hm+1,Sm+1) = (Hm, {⊥} ∪ S ′
m)409

where S ′
m = Sm \ {ℓ}.410

The sequence ⟨(Hi,Si) : i ∈ {1, . . . , m + 1}⟩ is a valid CC proof of cost(F) ≥ 1.411

Moreover, notice that costHm(S ′
m) = k − 1, so by induction hypothesis there is a CC412

proof ⟨(Hm+1,S ′
m+1), . . . , (Ht, {⊥, k−1. . . ,⊥} ∪ St)⟩ and where Ht ∪ St is satisfiable. Putting413

both proofs together, we obtain a valid CC proof of cost(F) = k.414

◀415

A.3 Simulations416

▶ Theorem A.6. CCP polynomially simulates the OLLP calculus using sorting networks to417

encode soft cardinality constraints.418

Proof. One application of the OLL rule (in eq. (3)) can be simulated by O(n log n) applica-419

tions of the comp rule using the construction from [1], plus one application of contr rule to420

replace A1 + · · ·+ Ar ≥ r —which is A1 ∧ · · · ∧Ar in any sorting network— by ⊥. We use421

the same proof system P to certify the correctness of the contr rule and the correctness of422

the OLL rule. In both cases, we have to certify in P the unsatisfiability of A1 ∧ · · · ∧Ar. ◀423

▶ Theorem A.7. CCP linearly simulates the Fu&MalikP calculus with symmetry breaking.424

Proof. One application of the Fu&Malik Sym. Break rule can be simulated by r − 1425

applications of the comp rule plus one application of contr to derive ⊥ from A1 ∧ · · · ∧Ar.426

Like in the OLL case, we assume we are using the same proof system in both calculi to427

certify the unsatisfiability of A1 ∧ · · · ∧Ar. ◀428

I. Bonacina, J. Levy and I. M. Liberal 13

A.4 CSat429

▶ Theorem A.8 (Correctness). The algorithm CSat on input F = H ∪ S, if it terminates,430

returns costH(S).431

Proof. Let H0 and S0 be the input of the algorithm. The following quantities432

rub = min
α∈A
{costα(S)} and433

costH0(S0) = costH(S) + lb434

are invariants of the main loop.435

For the first invariant, notice that rub is initialized to minα∈A{costα(S0)}. Every time436

a new assignment α is added to A, we compute the minimum among the old value and437

costα(S), hence maintaining the invariant. When we remove an unsatisfiable soft clause from438

S, i.e. when we apply contr, we decrease rub, again maintaining the first invariant.439

For the second invariant, notice that runs of CSat simulate the application of contr440

and comp on H and S, except that, in the application of contr, instead of replacing S by441

(S \ {c}) ∪ {⊥}, we remove the clause c and increase lb by 1. By induction, if we are in the442

iteration i and we have already obtained lbi, if we apply the comp rule to some (Hi,Si), we443

do not increase lbi and therefore the soundness of the rule implies the equality444

costH0(S0) = costHi
(Si) + lbi445

= costHi+1(Si+1) + lbi+1.446

If we remove an unsatisfiable clause c due to the contr rule, we increase lbi by 1, i.e.,447

lbi+1 = lbi + 1. Moreover, it is clear that448

costHi+1(Si+1) = costHi(Si \ {c})449

= costHi
(Si)− 1.450

Therefore,451

costHi+1(Si+1) + lbi+1 = costHi
(Si)− 1 + lbi + 1452

= costHi
(Si+1) + lbi453

= costH0(S0).454

When we leave the loop, we have rub = 0, therefore there exists an assignment α in A that455

satisfies all soft clauses in S, costα(S) = 0, hence costH(S) = 0 and costH0(S0) = lb. ◀456

▶ Theorem A.9. The algorithm CSat with the heuristic in Algorithm 2 always terminates in457

O(|S|2) iterations.458

Proof. The heuristic function in Algorithm 2, when called in CSat, always returns a pair459

(b1, b2) of soft clauses such that countA(b1 ∧ b2) > countA(z), for any soft clause z ∈ S.460

Indeed, when the function heuristic is called461

1. the condition ∃c ∈ S ∀α ∈ A α(c) = 0 is false, hence for every b ∈ S exists an assignment462

α ∈ A s.t. α(b) = 1, and463

2. rub > 0, hence for every assignment α ∈ A exists a b ∈ S with α(b) = 0.464

In other words, any row in the Boolean matrix M has a 1, and any column has a 0.465

For any x ∈ B1, i.e. maximizing countA(x), there exists an α ∈ A such that α(x) = 1.466

Hence countA(x) is strictly smaller than |A|. For this α, there exists an y such that α(y) = 0.467

14 Beyond Core-Guided MaxSAT

Clearly, x ≠ y. We conclude that, for any (x, y) ∈ B2, countA(x∧ y) > countA(x) and, since468

countA(x) was maximal, countA(x ∧ y) > countA(z), for any z ∈ S. Since B3 is a subset of469

B2, we can conclude this property for any pair returned by heuristic.470

Now, every time heuristic is called, it returns a pair of soft clauses whose conjunction471

was not in S. Therefore, it cannot be called more than |S| − 1 many times. At some point472

we get a conjunction of soft clauses that is unsatisfiable, or we get a satisfying assignment473

and we leave the loop. In the worst case, the contr rule will be applied |S| many times,474

and between every two applications of contr, the comp rule will be applied |S| − 1 many475

times. ◀476

	1 Introduction
	2 Preliminaries
	3 The Comparator Calculus
	4 Connection with Core-Based MaxSAT Solvers
	4.1 The Proof System Behind the OLL Algorithm
	4.2 The Proof System Behind Fu&Malik Algorithm

	5 A New SAT-based Algorithm for MaxSAT
	6 Conclusions and Further Work
	A Appendix
	A.1 The comparator Calculus
	A.2 The Comparator Calculus on Partial MaxSAT
	A.3 Simulations
	A.4 CSat

