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1 Introduction

When encoding combinatorial problems into propositional logic, one commonly must encode
selecting an object from a set. The direct encoding of ExactlyOne (ℓ1, . . . , ℓk) splits the
constraint into AtLeastOne (ℓ1, . . . , ℓk) and AtMostOne (ℓ1, . . . , ℓk), where the former is
just a clause and the latter blocks any pair of these literals from both being true.:

(ℓ1 ∨ · · · ∨ ℓk) ∧
∧

1≤i<j≤k

(ℓi ∨ ℓj)

On the other hand, the sequential counter encoding [3] introduce variables that help solvers
to reason about multiple objects at the same time.

▶ Example 1. Consider the constraint ExactlyOne (ℓ1, ℓ2, ℓ3). The sequential counter
encoding uses the following clauses:

(s1 ∨ ℓ1) ∧ (s1 ∨ ℓ1)︸ ︷︷ ︸
s1↔ℓ1

∧ (s2 ∨ s1 ∨ ℓ2) ∧ (s2 ∨ s1) ∧ (s2 ∨ ℓ2)︸ ︷︷ ︸
si↔(si−1∨ℓi)

∧ (s1 ∨ ℓ2) ∧ (s2 ∨ ℓ3)︸ ︷︷ ︸
si−1∨ℓi

∧ (s2 ∨ ℓ3)︸ ︷︷ ︸
sk−1→ℓk

This paper presents a lightweight reencoding method that adds such variables while
replacing some clauses to improve solver performance across a variety of benchmarks.

2 Reencoding Method

For a formula F , we say a clause C is a unique literal clause (ULC) if no literal in C appears
outside of C in F . Intuitively, all literals in a ULC are unique to that clause. An important
property is that if F is satisfiable, then F has a satisfying assignment where exactly one
literal in each ULC C is true. In other words, any satisfying assignment can be adjusted
(if necessary) so that no ULC has two or more true literals, since extra true literals in C

can be flipped to false without affecting other clauses. So, every ULC represents an implicit
exactly-one constraint. We reencode them using the sequential counter encoding. In place of
a ULC C with k literals, we introduce k − 1 new auxiliary “order” variables and add clauses
linking these variables with the original k literals to ensure at most one of the originals can be
true (while preserving the at-least-one requirement). The added variables and clauses provide
additional structure that could help guide the solver’s CDCL search. We also observed
that the effectiveness of reencoding depends on the ordering of literals in the sequential
counter. In practice, leaving the clause literals in arbitrary order (or shuffling them) can hurt
performance. On the other hand, a nice ordering of literals in ULCs could allow the solver
to learn short, useful clauses. We therefore apply a heuristic to sort the literals of each ULC
according to a structural criterion before encoding, called aligning ULCs. This heuristic not
only improves performance, but also helps predicting whether reencoding a formula will be
beneficial. We implemented the above reencoding as a preprocessing step in CaDiCaL with
support for solution reconstruction and proof logging.
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3 Experimental Results

Within the 5,355 formulas in Anniversary track of the SAT Competition 2022 [1], our method
reencoded 1,014 (∼ 19%) of them, and led to substantial speedups when solving the 459
(∼ 9%) alignable formulas.
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Figure 1 Sequential counter encoding on alignable instances: Aligned vs. original (left) and
Aligned vs. SBVA (right).

The left plot of Figure 1 compares solver runtimes on alignable formulas, contrasting our
method’s aligned sequential counter encoding against the original encoding (baseline). For
alignable formulas, we observe a clear performance improvement with the aligned reencoding,
particularly on UNSAT instances. Most UNSAT points lie well below the diagonal, often
on the axes, indicating that adopting our method can solve more UNSAT formulas using
much less time. The SAT instances exhibit mixed results, but still, our method solves more
SAT formulas and has an overall advantage. We have verified all the proofs and satisfying
assignments produced by our method on the original formulas in this plot to make sure these
speedups are not due to conceptual or implementation errors.

We also tested if the state-of-the-art reencoding technique SBVA (structured bounded
variable addition) [2] would reencode these formulas, and found that it does affect most of
them. So, we compared our reencoding method with SBVA as preprocessor for CaDiCaL.
The results are shown in Figure 1. Our sequential counter encoding with alignment can solve
dozens of alignable formulas that cannot be solved when using SBVA, suggesting that these
approaches are orthogonal, and future work could attempt to combine them.

4 Conclusion

We presented a new reencoding technique for SAT formulas. While all existing work on
reencoding focuses on reducing the size of formulas, our technique increases the number
of variables and may also increase the number of clauses. The experimental results show
that our method increases the number of solved formulas from SAT Competitions, providing
concrete evidence that our reencoding method can greatly improve solver performance and
even outperform state-of-the-art reencoding techniques on the class of formulas we target.
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