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1 Introduction14

It is well known that no single algorithm excels across all problems or even all instances of a single15

problem [7]. This led to automated Algorithm Selection (AS), which aims to automatically choose16

the best algorithm(s) from a portfolio with complementary strengths. AS has proven effective in17

domains such as Boolean Satisfiability (SAT) [9] and Constraint Programming (CP) [3]. We define an18

algorithm as a model (the problem description) and the solver that processes it. Since problems can19

be modelled in many ways, high-level languages like MINIZINC [5] and ESSENCE [4] allow model20

specification without low-level detail. Toolchains such as MINIZINC, CONJURE [1], and SAVILE21

ROW [6] then translate those models into lower-level models. AS often uses Machine Learning (ML)22

to predict the best algorithm(s) based on instance features. Good features must capture relevant23

aspects of both the problem and the performance of modelling-solver combinations. A well-known24

feature set is FZN2FEAT [2], which extracts 95 features from FlatZinc [5]: a low-level representation25

that reflects specific modelling decisions. Rather than relying on low-level translations, we propose26

using a transformer encoder [8] to learn features directly from high-level problem descriptions. Our27

approach has three main advantages: (1) features are learned automatically from text, (2) high-level28

representations may contain more useful information for AS, and (3) the learned features are cheaper29

to extract. We evaluate this approach using the ESSENCE pipeline across three case studies: Car30

Sequencing, Covering Array, and Social Golfers.31

2 Methodology and key findings32

Our approach involves two main steps: (i) learning features from the high-level ESSENCE instance33

descriptions using a neural network, and (ii) using these features to select the best algorithm.34

Transformer-based Neural Network for Feature Learning35

We employ a Neural Network incorporating a BERT transformer encoder to process the textual input36

of problem instances. We developed two models that share a common core architecture consisting of:37

the Transformer Encoder, a Feature Elaborator (two linear layers with corresponding activations), and38

an Output Layer. The key difference between the two models lies in their output:39

B-NN Model, designed to predict the single best algorithm for a given instance. The final activation40

function is SoftMax, generating a probability distribution over the algorithms in the portfolio.41

C-NN Model, aims to learn the competitiveness of algorithms in the portfolio (i.e., an algorithm that42

solves an instance close to the best-performing algorithm’s time). The final activation function is the43
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2 Transformer-based Feature Learning for Algorithm Selection in Combinatorial Optimisation

0.17
0.89

1.61
2.34

PAR10

(b-NN, A)

(b-NN, K)

(c-NN, A)

(c-NN, K)

B-NN

          Car sequencing - Test         

0.18
17.18

34.18
51.18

PAR10

(b-NN, A)

(b-NN, K)

(c-NN, A)

(c-NN, K)

B-NN

          Covering array - Test         

0.00
4.92

9.83
14.74

PAR10

(b-NN, A)

(b-NN, K)

(c-NN, A)

(c-NN, K)

B-NN

          Social golfers - Test         

0.12
0.27

0.41
0.55

PAR10

(F2F, A)

(F2F, K)

(c-NN, K)

          Car sequencing - Test         

0.18
48.20

96.22
144.24

PAR10

(F2F, A)

(F2F, K)

(c-NN, K)

          Covering array - Test         

0.08
16.57

33.07
49.56

PAR10

(F2F, A)

(F2F, K)

(c-NN, K)

          Social golfers - Test         

Figure 1 Normalised PAR10 score on the test set comparing the neural features (top) and c-NN against
FZN2FEAT (bottom). We define the normalised score as (p(AS) − p(V BS))/(p(SBS) − p(V BS)), where
p(AS), p(V BS) and p(SBS) are the PAR10 scores of an AS approach. VBS’ score is 0 while SBS’ score is 1.

Sigmoid, which yields a competitiveness probability for each algorithm.44

Algorithm Selection Using Learnt Features45

We investigate two strategies for performing AS using the learnt features: We can use the B-NN46

model directly, where we select the algorithm with the highest probability (Fully Neural Approach).47

We can extract the features from the NN models (’b-NN’ from B-NN and ’c-NN’ from C-NN) and use48

them with an external AS algorithm, Autofolio (A) or K-means clustering (K) (Hybrid Approach).49

The extracted features combine the NN’s output with the Tanh output from the Feature Elaborator.50

2.1 Experimental Evaluation51

Experiments were conducted using 10-fold cross-validation, with performance measured by the52

PAR10 score normalised against SBS and VBS. Our approaches are named as: (features, AS) to53

have an easy way to identify each combination. The only exception is the fully neural approach54

named B-NN from the model used. In our findings, the hybrid approaches consistently outperformed55

B-NN. The (c-NN, K) approach, in particular, yields the best overall performance across the three56

problems. This suggests that separating feature learning from the AS decision can be more effective.57

To further prove our findings, we compared our (c-NN, K) approach with the same AS trained on58

FZN2FEAT features. The features learnt by our C-NN model generally outperformed FZN2FEAT59

features. Furthermore, FZN2FEAT extraction sometimes failed due to memory limitations, a problem60

not encountered with our method. The feature extraction process for c-NN features is significantly61

faster and more consistent with marginal impact on the final PAR10 score than for FZN2FEAT62

features, which often took several seconds with up to minutes on some instances. However, it’s63

important to note that the feature extraction process of our features requires a GPU.64

3 Conclusions65

We successfully demonstrate that transformer-based models can learn effective instance features66

directly from high-level descriptions of combinatorial optimisation problems. The proposed hybrid67

approach, (c-NN, K), showed strong performance, exceeding traditional features, while also68

incurring significantly lower feature extraction costs. This automated feature learning technique offers69

a viable path towards more adaptive and powerful algorithm selection systems.70
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